Justification of parameters and technology for safe extraction of gold ore reserves from pillars during underground mining

Aimed to replenish the resource base during mining of Vetrenskoe gold deposit, the geological exploration revealed promising and mineable reserves in several ore bodies on the lower horizons of the underground mine. Due to the increase in the mining depth, it was necessary to determine the stable design parameters of the sublevel mining system, namely, dimensions of the level and rib pillars. As a result, the sizes of the pillars were determined depending on the thickness and dip angle of the ore body and the application range of this technology was defined. For the mining conditions of a representative ore body, a version of the sublevel mining system with establishment of level and rib pillars was designed. Extraction of ore reserves from the pillars is carried out by their bulk caving to the bottom of stopes with ore drawing under caved rocks. The measures are proposed to reduce the loss of ore in the caved rock crests between haulage entries. Since there is practically no experience of bulk caving of pillars in the mine, the calculations of the boundaries of the hazardous zone of the shock wave impact were performed. The dependence of the excess pressure at the front of the air shock wave on the distance from the massive explosion site is determined. Taking into account the fact that mining of the deposit is carried out in the permafrost zone and with the open stoping system, the calculated value of the excess pressure at the front of the air shock wave without regard to local drags was chosen as a determining factor. In order to prevent accidents during massive blasting, all people are evacuated from the mine to ground surface to a distance of at least 50 m from the adit mouth.

Keywords: gold ore deposit, permissible exposure, pillar, mining system, bulk caving, air shock wave, local drag.
For citation:

Rozhkov A. A., Baranovsky K. V., Smirnov A. A., Solomein Yu. M. Justification of parameters and technology for safe extraction of gold ore reserves from pillars during underground mining. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):41—54. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_41.

Acknowledgements:

The research was carried out within the framework of State Task No. 07500581-19-00. Topic No. 0405-2019-0005.

Issue number: 5
Year: 2021
Page number: 41-54
ISBN: 0236-1493
UDK: 622.272:235
DOI: 10.25018/0236_1493_2021_51_0_41
Article receipt date: 25.12.2020
Date of review receipt: 02.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Rozhkov A. A.1, Cand. Sci. (Eng.), Senior Researcher at the Laboratory of Underground Geotechnology, geotech@igduran.ru;
Baranovsky K. V., Cand. Sci. (Eng.), Senior Researcher at the Laboratory of Underground Geotechnology
Smirnov A. A., Cand. Sci. (Eng.), Senior Researcher at the Laboratory of Underground Geotechnology
Solomein Yu. M., Researcher at the Laboratory of Underground Geotechnology
1 Institute of Mining, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia.

 

For contacts:
Bibliography:

1. Aksenov A. A., Ozhiganov I. A. Improving the practice of classifying deposits as prone to rock bursts. Bezopasnost’ truda v promyshlennosti. 2018, no. 1, pp. 58—60. [In Russ]

2. Sokolov I. V., Smirnov A. A., Antipin Yu. G., Baranovskij K. V., Nikitin I. V., Rozhkov A. A., Solomein Yu. M., Dedov O. Yu. Features of underground development of the Vetrenskoye gold deposit. Izvestia vuzov. Gornyj zhurnal. 2018, no. 4, pp. 12—22. [In Russ]

3. Sokolov I. V., Antipin Yu. G., Rozhkov A. A. Modernization of the mining system of a low-power deposit of rich copper pyrite ores. Ustojchivoe razvitie gornyh territorij. 2020, Vol. 12, no. 3 (45), pp. 444—453. [In Russ]

4. Neobutov G. P., Zubkov V. P., Petrov D. N. Assessment of the stability of rock mass outcrops in the conditions of underground mining of permafrost deposits. Nauchnoe obozrenie. 2014, no. 8—3, pp. 941—943. [In Russ]

5. Sosnovskaya E. L. Assessment of technogenic stresses on the contour of treatment chambers during the mining of steeply dipping gold veins of low power. Vestnik IrGTU. 2014, no. 12 (95), pp. 82—88. [In Russ]

6. Avdeev A., Sosnovskaya E.  Geomechanical  Conditions  of Vein  Gold  Deposits in Permafrost Zone. E3S Web of Conferences. VIII International Scientific Conference “Problems of Complex Development of Georesources” (PCDG 2020). Vol. 192. 2020. P. 01026. https:. doi.org/10.1051/e3sconf/202019201020.

7. Athey J. E., Werdon M. B., Twelker E., Henning M. W. Alaska’s Mineral Industry 2015. AK: Alaska Division of Geological & Geophysical Survey, Fairbanks. 2016. 45 p. DOI: 10.14509/29687.

8. Hoholov Yu. A., Solov’ev D. E. Forecast of the thermal regime of the mine taking into account the dynamics of the development of mining operations. MIAB. Mining Inf. Anal. Bull. 2013, no. 10, pp. 30—36. [In Russ]

9. Metodicheskie ukazaniya po opredeleniyu razmerov kamer i tselikov pri podzemnoi razrabotke rud tsvetnykh metallov [Guidelines for determining the size of chambers and pillars in the underground mining of non-ferrous metals], Chita, Chita branch of VNIPIgortsvetmet, 1988, 126 p. [In Russ]

10. Metodicheskie ukazaniya po ustanovleniyu razmerov kamer i celikov pri kamernyh sistemah razrabotki rud cvetnyh metallov [Guidelines for establishing the dimensions of chambers and pillars in chamber systems for the development of non-ferrous metal ores], Leningrad, VNIMI, 1972, 85 p. [In Russ]

11. Massabki R. F. Panel opening in sublevel open stope mining using modeling software / 24th World Mining Congress, 2016, Rio de Janeiro, Brazil. pp. 358—364.

12. Baranovskii  K. V.,  Solomein Yu.M., Antipin Yu.G.  Improving  the  technology of excavating stocks of pillars and the method of redeeming the developed space in the conditions of the Kyshtym underground mine. Problemy nedropol’zovaniya, 2018, no. 1 (16), pp. 5—12. [In Russ]

13. Tapsiev A. P., Frejdin A. M., Filippov P. A., Uskov V. A., Neverov A. A., Artemenko Yu. V., Vdovin G. K., Sadabaev K. T. Substantiation parameters and conducting a large-scale explosion at the Makmal mine in the seismically hazardous high-mountain zone of the Tien Shan ridge. Vzryvnoe delo. 2012, no. 108—65, pp. 316—332. [In Russ]

14. Shekhar G., Gustafson A., Boeg-Jensen P., Malmgren L., Schunnesson H. Draw control strategies in sublevel caving mines A baseline mapping of LKAB’s Malmberget and Kiirunavaara mines. The Journal of the Southern African Institute of Mining and Metallurgy, 2018, Vol. 118, Iss. 7, P. 723—733.

15. Lapčević V., Torbica S. Numerical Investigation of Caved Rock Mass Friction and Fragmentation Change Influence on Gravity Flow Formation in Sublevel Caving. Minerals, 2017, Vol. 7, Iss. 4. https:. doi.org/10.3390/min7040056

16. Savich I. N., Nesterov Yu. I. Substantiation of the front-end ore drawing regime. Markshejderiya i nedropol’zovanie. 2018, no. 1 (93), pp. 21—23. [In Russ]

17. Fowler A. C., Scheu B. A theoretical explanation of grain size distributions in explosive rock fragmentation. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, Vol. 472, Iss. 2190. DOI: 10.1098/rspa.2015.0843.

18. Sadovskij M. A. Izbrannye trudy: Geofizika i fizika vzryva [Selected works: Geophysics and physics of explosion], Moscow, Nauka, 2004, 440 p. [In Russ]

19. Zharikov S., Kutuev V. On the Issue of Defining Safe Distances and Overpressure Under Impact of Shock Air Blast Wave (Magnesitovaya Mine). E3S Web of Conferences. VIII International Scientific Conference “Problems of Complex Development of Georesources” (PCDG 2020). Vol. 192. 2020. P. 01027. https:. doi.org/10.1051/e3sconf/202019201027.

20. Nalis’ko N. N. Protection of personnel from air shock waves by controlling their propagation in extended structures. Vіsnik Pridnіprovs’koi derzhavnoi akademii budіvnictva ta arhіtekturi. 2018, no. 3 (241—242), pp. 102—114. [In Russ]

21. Morel G., Pillay M. The Occupational Risk Assessment Method: A Tool to Improve Organizational Resilience in the Context of Occupational Health and Safety Management. Advances in Safety Management and Human Factors : Proceedings of the AHFE 2019 International Conference on Safety Management and Human Factors. Series: Advances in Intelligent Systems and Computing. Cham : Springer, 2019. Vol. 969. P. 367—376.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.