Justification of design and parameters of mixed mining system for gently dipping low-grade complex ore body

The results of the research on the justification of a safe and effective technology for mining gently dipping body of low-grade complex ore are presented. The main limitations and causes of low efficiency of the traditional mining system by block caving with layered blasting in the conditions of gently dipping ore bodies and stable overlying rocks which require additional caving are revealed. The application conditions and the main design principles are determined for the mixed mining system based on the use of advantages of room-and-pillar mining at its minimized disadvantages. The rational variants of the mixed mining system are found and designed for a medium-thickness and gently dipping ore body. The variants differ in shape (rectangular or trapezoidal) and parameters (width) of rooms and pillars, in arrangement of rooms and pillars (across or along the strike of the ore body), and in mining technology and method of bottom preparation in the rooms (trench or flat). As a result of the geomechanical modeling as well as the technical and economic assessments, it is found that the optimal variant for the discussed conditions is the mixed mining system with rectangular flat-bottom rooms, caving of overlying rocks and extraction of ore reserves from the rib and level pillars arranged along the strike of the ore body by block caving. The efficiency of this variant is ensured by increased extractability of ore reserves up to 1.5-2 times, which allows enhanced value of produced and processed ore by 13.4 % and reduced operating costs per 1 ton of proven reserves by 9.1%.

Keywords: low-grade complex ore, medium-thickness gently dipping ore body, mixed mining system, geomechanical substantiation, technological parameters, extraction performance, technical and economic assessment.
For citation:

Sokolov I. V., Antipin Yu. G., Nikitin I. V., Krinitsyn R. V. Justification of design and parameters of mixed mining system for gently dipping low-grade complex ore body. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):88—104. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_88.

Issue number: 5
Year: 2021
Page number: 88-104
ISBN: 0236-1493
UDK: 622.272.06:622.627.2
DOI: 10.25018/0236_1493_2021_51_0_88
Article receipt date: 25.12.2020
Date of review receipt: 22.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Sokolov I. V., Dr. Sci. (Eng.), full member of the Academy of mining sciences, director;
Antipin Yu. G., Cand. Sci. (Eng.), head of the laboratory of underground geotechnology, е-mail: geotech@igduran.ru;
Nikitin I. V., research worker of the laboratory of underground geotechnology;
Krinitsyn R. V., head of the laboratory of geo-dimamics and rock pressure, е-mail: krin@ igduran.ru;
1 The Institute of Mining of the Ural branch of Russian Academy of Sciences (IM UB RAS), Ekaterinburg, Russia.


For contacts:

1. Kaplunov D. R., Radchenko D. N., Fedotenko V. S., Lavenkov V. S. Evaluation of the efficiency of using an underground mine to a new technological structure with an increase in the depth of mining, MIAB. Mining Inf. Anal. Bull. 2020, no. 12, pp. 5—15. [In Russ].

2. Sokolov I. V., Smirnov A. A., Antipin Yu. G., Nikitin I. V., Baranovskij K. V. Underground geotechnology in the combined development of a powerful iron ore deposit, Izvestija vuzov. Gornyj zhurnal. 2014, no. 7, pp. 25—32. [In Russ].

3. Savich I. N., Mustafin V. I. Justification of the parameters of the face ore output during the development of thick ore deposits, MIAB. Mining Inf. Anal. Bull. 2013, no. 6, pp. 23—28. [In Russ].

4. Freidin A. M., Neverov A. A., Neverov S. A. Geomechanical evaluation of a combined system for the development of thick shallow ore deposits with backfilling and collapse, Fiziko-tehnicheskie problemy razrabotki  poleznyh  iskopaemyh.  2016,  no.  5, pp. 114—124. [In Russ].

5. Belogorodcev O. V., Gromov E. V., Mel’nik V. B. Justification of development systems and their design parameters in conditions of intensification of production during the development of deep horizons of powerful ore deposits. MIAB. Mining Inf. Anal. Bull. 2016, no. 4, pp. 122—130. [In Russ].

6. Pavlov A. M., Fedoljak A. A. Improving the efficiency of underground mining of gold deposits in Eastern Siberia, Izvestija Sibirskogo otdelenija sekcii nauk o zemle rossijskoj akademii estestvennyh nauk. Geologija, razvedka i razrabotka mestorozhdenij poleznyh iskopaemyh. 2018, Vol. 41, no. 4 (65), pp. 97—106. [In Russ].

7. Antipin Yu. G., Baranovskij K. V., Rozhkov A. A., Kljuev M. V. Review of combined systems of underground mining of ore deposits. Problemy nedropol’zovanija. 2020, no. 3, pp. 5—22, available at: http:. trud.igduran.ru (accessed 18.12.2020)

8. Kant R., Sen P., Paul P. S., Kher A. A. A review of approaches used for the selection of optimum stoping method in hard rock underground mine. International Journal of Applied Engineering Research. 2016, Vol. 11, pp. 7483—7490.

9. Javanshirgiv M., Safari M. The selection of an underground mining method using the fuzzy topsis method: A case study in the Kamar Mahdi II fluorine mine. Mining Science. 2017, Vol. 24, pp. 161—181. DOI: 10.5277/msc172410

10. Abdellah Wael R. Serviceability analysis of deep underground openings driven injointed-rock. International Journal of Mining Science and Technology. 2017, Vol. 27, p. 1019—1024. DOI: 10.1016/j.ijmst.2017.06.024

11. Malinovskiy E. G. Povyshenie polnoty i kachestva otrabotki zapasov pologopadajushhih zalezhej sistemami s obrusheniem rudy i nalegajushhih porod na primere rudnika «Zapoljarnyj» [Increasing the completeness and quality of mining reserves of sloping deposits by mining systems with caving of ore and overlying rocks on the example mine “Zapolyarny”]. Сandidate’s thesis, Krasnoyarsk, 2004, 159 p. [In Russ]

12. Sokolov I. V., Antipin Yu. G., Baranovskiy K. V. Research of the design and parameters of the combined system for the development of an inclined quartz deposit, Izvestija Tomskogo politehnicheskogo universiteta. Inzhiniring georesursov. 2017, Vol. 328, no. 10, pp. 87—99. [In Russ].

13. Sokolov I. V., Antipin Yu. G., Smirnov A. A., Nikitin I. V. Prospective technologies for underground mining of vein gold deposits, Izvestija Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle. 2020, no. 4, pp. 271—283. [In Russ].

14. Smirnov A. A., Baranovskiy K. V., Rozhkov A. A. Application of the principles of resource conservation when breaking hard fractured ores with fans of borehole charges, MIAB. Mining Inf. Anal. Bull. 2020, no. 3—1, pp. 300—312. [In Russ].

15. Zoteev O. V. Modeling of cracks in calculating the stress-strain state of rock mass, Izvestija Ural’skoj gosudarstvennoj gorno-geologicheskoj akademii. Gornoe delo. 2000, no. 11, pp. 252—259. [In Russ].

16. Sosnovskaya E. L., Avdeev A. N. Evaluation of the initial stress state of the rock mass in the permafrost zone (on the example of the Irokinda deposit), MIAB. Mining Inf. Anal. Bull. 2020, no. 3—1, pp. 208—215. [In Russ].

17. Lipin Ya. I., Krinitsyn R. V. Topical issues of stress assessment in predicting rock burst hazard at the present stage, Sovremennye problemy mehaniki. 2018, no. 33 (3), pp. 410—418. [In Russ].

18. Avdeev A., Sosnovskaya E. Geomechanical conditions of vein gold deposits in permafrost zone. E3S Web Conferences, 2020, Vol. 192, 01026.

19. Krinicyn R. V., Polhovskij V. I., Hudjakov S. V. Increasing the stability of the roof of the chambers during underground mining, Problemy nedropol’zovanija. 2018, no. 3, pp. 22—28, available at: http:. trud.igduran.ru (accessed 23.12.2020). [In Russ].

20. Sokolov I. V., Smirnov A. A., Antipin Yu. G., Sokolov R. I. Influence of extraction indicators on the efficiency of underground mining technology of ore deposits, Izvestija vuzov. Gornyj zhurnal. 2012, no. 3, pp. 4—11. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.