Justification of shear wave generation using laser ultrasound in the mode of echo pulses in geomaterial

One of the main parameters of geomechanical models is the static elastic modulus. However, sometimes there is no sufficient amount of geological material and the dynamic elastic moduli are determined from elastic wave velocities in rock specimens; then the static moduli are determined using available correlation dependences. Existing ultrasonic techniques that involve generating and recording ultrasound with piezoelectric components are unable to measure velocities with high accuracy. To address this problem, it is proposed to use laser ultrasonic diagnostics. Based on the theory of quantitative seismology, the paper theoretically substantiates the generation of shear waves at the interface between two media as a result of pulse-echo laser ultrasonic propagation. On this basis, we analytically simulated the temporal shape of ultrasonic pulses travelling in a limestone specimen. Also, experimental studies were carried out using a laser ultrasonic flaw detector UDL-2M to obtain the temporal shape of ultrasonic pulse in the limestone specimen. The analytically determined shape of the ultrasonic pulse was compared with the experimental one; the velocities were determined experimentally and analytically. Consequently, a technique is developed for determining elastic wave velocities in rock specimens by waveform matching.

Keywords: Shear wave generation, propagation velocity, time waveform, amplitude coefficients, quantitative seismology, laser ultrasound diagnostics, precision measurements, dynamic modulus of elasticity, limestone.
For citation:

Shibaev I. A., Bychkov A. S. Justification for generating a shear elastic wave using laser ultrasound in the mode of echo pulses in a geomaterial. MIAB. Mining Inf. Anal. Bull. 2021;(4-1):108—117. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_108.

Acknowledgements:

The reported study was funded by RFBR, project number 19-35-90063.

Issue number: 4
Year: 2021
Page number: 108-117
ISBN: 0236-1493
UDK: 622.023.25+620.179.16
DOI: 10.25018/0236_1493_2021_41_0_108
Article receipt date: 20.01.2021
Date of review receipt: 24.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

Shibaev I. A.1, PhD-student, mrdfyz@mail.ru;
BychkovA. S.1, Cand. Sci. (Phys. Mathem.), Research Assistant, abychkov@optoacoustic.ru;
1 National Research Technological University “MISiS” Mining Institute, Moscow, Russia.

 

For contacts:
Bibliography:

1. Osipov Yu. V., Koshelev A. E. Modern methods for determining the deformation properties of rocks. MIAB. Mining Inf. Anal. Bull. 2017, no. 11, pp. 68—75. DOI: 10.25018/0236-1493-2017-11-0-68-75.

2. Waqas U., Ahmed M. F. Prediction Modeling for the Estimation of Dynamic Elastic Young’s Modulus of Thermally Treated Sedimentary Rocks Using Linear–no.nlinear Regression Analysis, Regularization, and ANFIS. Rock Mechanics and Rock Engineering, 2020, Vol. 53, Issue 12, pp. 5411—5428. DOI: 10.1007/s00603-020-02219-8.

3. Hoek E., Diederichs M. S. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences. 2006, Vol. 43, pp. 203—215.

4. Sas I. E., Morozov D. V., Morozov N. A. On calculation of the bearing capacity of selfopening ground anchors using PLAXIS 2D software package. Durability of Critical Infrastructure, Monitoring and Testing. Lecture no.tes in Mechanical Engineering. Springer, Singapore, 2017, pp. 104—109. DOI: 10.1007/978-981-10-3247-9_12.

5. Sabatakakis N., Koukis G., Tsiambaos G., Papanakli S. Index properties and strength variation controlled by microstructure for sedimentary rocks. Engineering Geology. 2008, Vol. 97, pp. 80—90.

6. Saad A., Guedon S., Martineau F. Microstructural weathering of sedimentary rocks by freeze-thaw cycles: Experimental study of state and transfer parameters. Comptes Rendus Geoscience. 2010, Vol. 342, Issue 3, pp. 197—203.

7. Li J., Zhou K., Zhang Y., Xu Y. Experiment study on physical characteristics in weathered granite under freezing-thawing cycles, Zhongnan Daxue Xuebao (Ziran Kexue Ban). Journal of Central South University (Science and Technology). 2014, Vol. 45, Issue 3, pp. 798—802.

8. Eissa E. A., Kazi A. Relation between static and dynamic Young’s moduli of rocks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1988, Vol. 25, Issue 6, pp. 479—482.

9. Mashinskij Je. I. Physical reasons for the difference between static and dynamic elastic moduli of rocks. Geology and Geophysics, 2003, Vol. 44, no. 9, pp. 953—959. [In Russ].

10. Auld B. A. Acoustic Fields and Waves in Solids. Volume 1. California: Krieger Publishing Company, 1990. 446 p.

11. Porody gornye. Metod opredelenija skorostej rasprostranenija uprugih prodol’nyh i poperechnyh voln, GOST 21153.7—75, Мoscow, IPK Izdatel’stvo standartov, 2001, 8 p.

12. ASTM 2845—08. Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock, 2017, 7 p.

13. In’kov V. N., Cherepetskaya E. B., Shkuratnik V. L., Karabutov A. A., Makarov V. A. Ultrasonic echo sounding by thermal optical sources of longitudinal waves. Journal of Mining Science. 2004, Vol. 40, Issue 3, pp. 231—235

14. Kravtsov A., Ivanov P. N., Malinnikova O. N., Cherepetskaya Е. B., Gapeev A. A. Laser–ultrasonic spectroscopy of the Pechora basin coal microstructure. MIAB. Mining Inf. Anal. Bull. 2019, Vol. 6, pp. 56—65. [In Russ]. DOI: 10.25018/0236—1493—2019— 06-0-56-65.

15. Karabutov A. A., Podymova N. B., Cherepetskaya E. B. Determination of uniaxial stresses in steel structures by the laser-ultrasonic method. Journal of Applied Mechanics and Technical Physics. 2017, Vol. 58, Issue 3, pp. 503—510. DOI: 10.1134/S0021894417030154.

16. Bychkov A., Simonova V., Zarubin V., Cherepetskaya E., Karabutov A. The progress in photoacoustic and laser ultrasonic tomographic imaging for biomedicine and industry: A review. Applied Sciences. 2018, Vol. 8, Issue 10, Article 1931. DOI:10.3390/app8101931.

17. Cherepetskaya E. B., Karabutov A. A., Makarov V. A., Mironova E. A., Shibaev I. A., Vysotin N. G., Morozov D. V., Internal structure research of shungite by broadband ultrasonic spectroscopy. Key Engineering Materials. 2017, Vol. 755, 2017, pp. 242—247.

18. Aki K., Richards P. Kolichestvennaya sejsmologiya [Quantitative seismology]. Moscow, Mir, 1983, 521 p. [In Russ]

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.