Justification of safe operating conditions for mining transportation machines powered by internal combustion engines using air pollutant emission criterion

Wide application of mining transportation equipment powered by internal combustion engines (ICE) is conditioned by intensification of all mineral mining processes. Being evidently advantageous, operation of this equipment induces some adversities which impair safety of personnel engaged in maintenance or operating in vicinity of ICE-powered machines. Such adversities are, first of all, air pollutant emission of exhaust gases in concentrations greatly higher than the maximum allowable values. Normalization of chemical parameters of mine air is possible by feeding required air quantity in roadways where ICE-powered machines operate. The required air quantity depends on many factors: ecological standard, lifetime, engine capacity and operating conditions of ICE machines, their design parameters, travel velocity in roadways, etc. This article discusses determination of air quantity to be fed in a roadway to dilute toxic substances in exhaust gases down to values which ensure carbon oxide and nitric oxide (in equivalence of nitrogen dioxide) concentrations as per the Federal Safety Norms and Regulations. Valuation of air pollutant emission on a full scale used a set of experiments including measurement of exhaust flow rate, temperature and concentrations of carbon oxide and nitric oxides. The resultant values were used to calculate the weight characteristics of air pollutant emissions and to determine the required air quantity to dilute them down to the allowable concentrations.

Keywords: mine air, diesel-powered dump trucks, exhaust gases, thermodynamic parameters, pollutant concentration, full-scale measurements, catalytic neutralizer.
For citation:

Seregin A. S., Fazylov I. R., Prokhorova E. A. Justification of safe operating conditions for mining transportation machines powered by internal combustion engines using air pollutant emission criterion. MIAB. Mining Inf. Anal. Bull. 2022;(11):37-51. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_37.

Acknowledgements:

The study was supported under the state contract in the sphere of science for 2021, Grant No. FSRW-2020-0014

Issue number: 11
Year: 2022
Page number: 37-51
ISBN: 0236-1493
UDK: 622.41
DOI: 10.25018/0236_1493_2022_11_0_37
Article receipt date: 25.10.2021
Date of review receipt: 09.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

A.S. Seregin1, Cand. Sci. (Eng.), Assistant Professor, e-mail: seregin_as@pers.spmi.ru, ORCID ID: 0000-0002-2897-8604,
I.R. Fazylov1, Graduate Student, e-mail: Fazylovir@mail.ru, ORCID ID: 0000-0001-7975-9471,
E.A. Prohorova1, Graduate Student, e-mail: prokhorovaea96@gmail.com, ORCID ID: 0000-0002-5018-1773,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.S. Seregin, e-mail: seregin_as@pers.spmi.ru.

Bibliography:

1. Sokolov E. M., Kachurin N. M. Uglekislyy gaz v ugol'nykh shakhtakh [Carbon dioxide in coal mines], Moscow, Nedra, 1987, 141 p.

2. Sobamowo M. G. Mathematical models for the prediction of the effects of carbon-monoxide on human health under continuous and periodic exposures. Annals of the Faculty of Engineering Hunedoara. 2018, vol. 16, no. 2, pp. 157—164.

3. Benbrahim-Tallaa L. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. The Lancet Oncology. 2012, vol. 13, no. 7, pp. 663—664. DOI: 10.1016/ s1470-2045(12)70280-2.

4. Okasov D. T. Quantity of ventilation air to reduce concentrations of toxic components of exhaust from machines with internal combustion engines to MPC in mine air. Vestnik VKGTU. Geologiya, gornoe delo, metallurgiya. 2007, no. 2, pp. 21—27. [In Russ].

5. Levin L. Y., Zaitsev A. V., Grishin E. L., Semin M. A. Calculation of air quantity by oxygen content for ventilation of working areas when using machines with internal combustion engines. Occupational Safety in Industry. 2015, no. 8, pp. 43—46. [In Russ].

6. Gendler S. G., Borisovsky I. A. Aerodynamic control in open pit gold mining. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 99—107. [In Russ]. DOI: 10.25018/0236-1493-20212-0-99-107.

7. Gendler S. G., Borisovsky I. A. Estimated impact of temperature conditions on deep pits natural ventilation in the Arctic. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 218–227. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-218-227.

8. Zinovieva O. M., Kuznetsov D. S., Merkulova A. M., Smirnova N. A. Digitalization of industrial safety management systems in mining. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 113–123. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-113-123.

9. Grigorev E., Nosov V. Improving quality control methods to test strengthening technologies: a multilevel model of acoustic pulse flow. Applied Sciences. 2022, vol. 12, no. 9, article 4549. DOI: 10.3390/app12094549.

10. Kurnia J. C., Sasmito A. P., Wong W. Y., Mujumdar A. S. Prediction and innovative control strategies for oxygen and hazardous gases from diesel emission in underground mines. Science of the Total Environment. 2014, vol. 481, pp. 317—334. DOI: 10.1016/j.scitotenv.2014.02.058.

11. Noll J. D., Patts L., Grau R. The effects of ventilation controls and environmental cabs on diesel particulate matter concentrations in some limestone mines. Proceedings of the 12th US/ North American Mine Ventilation Symposium. 2008, pp. 9—11.

12. Jundika C. K., Agus P. S., Wai Y. W., Arun S. M. Prediction and innovative control strategies for oxygen and hazardous gases from diesel emission in underground mines. Science of the Total Environment. 2014, vol. 481, pp. 317—334.

13. Kabanov E. I., Korshunov G. I., Magomet R. D. Quantitative risk assessment of miners injury during explosions of methane-dust-air mixtures in underground workings. Journal of Applied Science and Engineering. 2020, vol. 24, no. 1, pp. 105—110. DOI: 10.6180/jase. 202102_24(1).0014.

14. Zinurov V. E., Nikandrova M. V., Kharkov V. V. Assessment of thermal storage technologies in energy sector. Ural Smart Energy Conference (USEC 2020). 2020, pp. 68—71.

15. Halim A. Ventilation requirements for diesel equipment in underground mines-Are we using the correct values. 16th North American Mine Ventilation Symposium. Golden, Colorado. 2017, pp. 1—7.

16. Haney R. A. Ventilation requirements for modern diesel engines. Nort American Mine Ventilation Symposium, Salt Lake City, Utah, USA, 2012, pp. 249—256.

17. Bugarski A. D. Diesel aerosols and gases in underground mines; guide to exposure assessment and control. Pittsburgh: PA. 2011, pp. 159.

18. Korshunov G. I., Eremeeva A. M., Drebenstedt C. Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives. Journal of Mining Institute. 2021, vol. 247, pp. 39—47. [In Russ]. DOI: 10.31897/PMI.2021.1.5.

19. Semin M. A., Grishin E. L., Levin L. Y., Zaitsev A. V. Automated ventilation control in mines. Challenges, state of the art, areas for improvement. Journal of Mining Institute. 2020, vol. 246, pp. 623—632. [In Russ]. DOI: 10.31897/PMI.2020.6.4.

20. Sudarikov S., Narkevsky E., Petrov V. Identification of two new hydrothermal fields and sulfide deposits on the mid-atlantic ridge as a result of the combined use of exploration methods: methane detection, water column chemistry, ore sample analysis, and camera surveys. Minerals. 2021, vol. 11, no. 7, pp. 726. DOI: 10.3390/min11070726.

21. Smirnyakov V. V., F’en N. M. Justification of a methodical approach of aerologic evaluation of methane hazard in development workings at mines of Vietnam. Journal of Mining Institute. 2018, vol. 230, pp. 197—203. [In Russ]. DOI: 10.25515/PMI.2018.2.197.

22. Nikolaev A. V., Fainburg G. Z. On energy and resource-saving of underground oil mine workings. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo. 2015, no. 14, pp. 92—98. [In Russ].

23. Tier 3 motor vehicle emissions and fuel standards, Federal Register. 2015, vol. 80, no. 33.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.