Preventing dust explosions in coal mines: Methods and current trends

A growing trend of underground coal mining draws close attention to issues of occupational safety. One of the critical factors to govern the rate of mining operations is emission of explosive gases and dust in the limited spaces of roadways per unit time or per ton of rock. In this and in the last centuries, explosions of gas and dust, repeatedly recorded in coal mines in France, US, Poland, South Africa, Japan, China, Ukraine and Russia, jointly caused tens of thousands of deaths. This article gives the statistics of the largest accidents connected with explosions of hybrid dust/methane/air mixtures in coal mines worldwide, and characterizes the main causes of these tragedies, including imperfection of antidust activities, departure from the dust suppression procedure, sequence and periodicity, as well as the lack of the appropriate production control. The scope of the discussion embraces the present-day methods and approaches to prevention and localization of coal dust explosions, and their weak points. Some engineering solutions proposed may be of practical relevance, given their proper validation, and can improve dust conditions and reduce probability of dust explosions in coal mines.

Keywords: dust explosion protection in mines, coal dust, gas and dust explosions, dust laying rate, settling coal dust with slate, dust explosion hydroprotection, hydrogel, quality control in dust laying and in settling coal dust with slate.
For citation:

Kornev A. V., Spitsyn A. A., Korshunov G. I., Bazhenova V. A. Preventing dust explosions in coal mines: Methods and current trends. MIAB. Mining Inf. Anal. Bull. 2023;(3):133-149. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_133.

Acknowledgements:
Issue number: 3
Year: 2023
Page number: 133-149
ISBN: 0236-1493
UDK: 622.807, 622.81
DOI: 10.25018/0236_1493_2023_3_0_133
Article receipt date: 28.12.2022
Date of review receipt: 28.01.2023
Date of the editorial board′s decision on the article′s publishing: 10.02.2023
About authors:

A.V. Kornev1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Kornev_AV@pers.spmi.ru, ORCID ID: 0000-0001-6371-9969,
A.A. Spitsyn1, Graduate Student, e-mail: spitsyn1998@inbox.ru, ORCID ID: 0000-0003-1148-6109,
 G.I. Korshunov1, Dr. Sci. (Eng.), Professor, e-mail: Korshunov_GI@pers.spmi.ru, ORCID ID: 0000-0003-2074-9695,
V.A. Bazhenova1, Master’s Degree Student, e-mail: viola.bazhenova@yandex.ru, ORCID ID: 0000-0003-3891-5735,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.A. Spitsyn, e-mail: spitsyn1998@inbox.ru.

Bibliography:

1. Romanchenko S. B., Kosterenko V. N. Coal dust explosions full-scale research and localization means efficiency criteria. Vestnik of safety in coal mining scientific center. 2018, no. 4, pp. 6—20. [In Russ].

2. Smirnyakov V. V., Rodionov V. A., Smirnyakova V. V., Orlov F. A. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. Journal of Mining Institute. 2022, vol. 253, pp. 71—81. [In Russ]. DOI: 10.31897/PMI.2022.12.

3. Petrenko I. E. Russia’s coal industry performance for January—December, 2021. Ugol'. 2022, no. 3, pp. 9—23. [In Russ]. DOI: 10.18796/0041-5790-2022-3-9-23.

4. Tarazanov I. G. Russia’s coal industry performance for January—September 2021. Ugol'. 2022, no. 1, pp. 47—58. [In Russ]. DOI: 10.18796/0041-57902022-1-47-58.

5. Litvinov A. R., Kolikov K. S., Ishkhneli O. G. Accident and injuries at the enterprises of the coal industry in 2010—2015. Vestnik of safety in coal mining scientific center. 2017, no. 2, pp. 6—17. [In Russ].

6. Fomin A. I. Analysis of conditions and labor protection at enteprises of Kuzbass coal industry. Bulletin of the Scientific Center of VostNII on Industrial and Environmental Safety. 2020, no. 3, pp. 57—61. [In Russ]. DOI: 10.25558/VOSTNII.2020.53.88.007.

7. Korobeynikova E. A., Panarina A. V., Kuksova K. D., Pudovkina A. A. Explosion at the Listvyazhnaya mine: reasoning and conclusions. Nauka Rossii — budushchee strany: sbornik statey Vserossiyskoy nauchno-prakticheskoy konferentsii [Science of Russia — the future of the country: collection of articles of the All-Russian Scientific and Practical Conference], Penza, Nauka i Prosveshchenie, 2022, pp. 230—235. [In Russ].

8. Smirnyakov V. V., Smirnyakova V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1917—1929.

9. Ermolaev A. M., Kobylyansky M. T. Analysis and ways to reduce fatal injuries in the coal industry. Bulletin of the Scientific Center of VostNII on Industrial and Environmental Safety. 2017, no. 2, pp. 91—100. [In Russ].

10. Fomin A. I., Voroshilov Ya. S., Paleev D. Yu. Study of the influence of coal dust on the safety of mining operations. Russian Mining Industry Journal. 2019, no. 1(143), pp. 33. [In Russ]. DOI: 10.30686/1609-9192-2019-1-143-33-36.

11. Levkin N. B. Predotvrashchenie avariy i travmatizm v ugol'nykh shakhtakh Ukrainy [Prevention of accidents and injuries in coal mines in Ukraine], Donetsk, Donbass, 2002, 392 p.

12. Danilov A. G., Grachev E. A., Kulchitsky S. V., Galiev M. G. Properties and parameters that determine the explosiveness of coal dust. Evraziyskiy nauchnyy zhurnal. 2015, no. 8, pp. 12—17. [In Russ].

13. Zhang H., Han W., Xu Y., Wang Z. Analysis on the development status of coal mine dust disaster prevention technology in China. Journal of Healthcare Engineering. 2021, vol. 2021, article 5574579. DOI: 10.1155/2021/5574579.

14. Luo Y., Wang D., Cheng J. Effects of rock dusting in preventing and reducing intensity of coal mine explosions. International Journal of Coal Science and Technology. 2017, vol. 4, no. 2, pp. 102—109. DOI: 10.1007/s40789-017-0168-z.

15. Gridina E. B., Kovshov S. V., Borovikov D. O. Hazard mapping as a fundamental element of OSH management systems currently used in the mining sector. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022, vol. 1, pp. 107—115.

16. Gridina E. B., Borovikov D. O. Identification of the causes of injuries based on occupational risk assessment maps at the open-pit coal. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 114—128. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_114.

17. Gendler S. G., Gabov V. V., Babyr N. V., Prokhorova E. A. Justification of engineering solutions on reduction of occupational traumatism in coal longwalls. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 5—19. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_5.

18. Gendler S. G., Prokhorova E. A. Assessment of the cumulative impact of occupational injuries and diseases on the state of labor protection in the coal industry. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-2, pp. 105—116. [In Russ]. DOI: 10.25018/0236_1493_2022_102_0_105.

19. Balovtsev S. V. Higher rank aerological risks in coal mines. Mining Science and Technology (Russia). 2022, vol. 7, no. 4, pp. 310–319. DOI:10.17073/2500-0632-2022-08-18.

20. Balovtsev S. V., Skopintseva O. V., Kulikova E. Yu. Hierarchical structure of aerological risks in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 276–285. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-276-285.

21. Hosseini A., Najafi M., Morshedy A. H. Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation. Journal of Mining Institute. 2022, vol. 258, pp.1050—1060. [In Russ].

22. Rodionov V. A., Tsygankov V. D., Zhikharev S. Ya., Kormshchikov D. S. Research procedure for coal dust aerodynamics in long roadways. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 69–79. DOI: 10.25018/0236_1493_2021_10_0_69.

23. Kharchenko V. F. Investigation of dust deposits in the mine workings of coal mines. MIAB. Mining Inf. Anal. Bull. 2020, no. S30, pp. 17—23. [In Russ]. DOI: 10.25018/0236-14932020-10-30-17-23.

24. Khokhlov S., Abiev Z., Makkoev V. The choice of optical flame detectors for automatic explosion containment systems based on the results of explosion radiation analysis of methaneand dust-air mixtures. Applied Sciences (Switzerland). 2022, vol. 12, no. 3, pp. 1—16. DOI: 10.3390/app12031515.

25. Gabov V. V., Xuan N. V., Zadkov D. A., Tho T. D. Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts. Journal of Mining Institute. 2020, vol. 257, pp. 764—770. [In Russ]. DOI: 10.31897/PMI.2022.66.

26. Romanchenko S. B., Naganovskiy Y. K., Kornev A. V. Innovative ways to control dust and explosion safety of mine workings. Journal of Mining Institute. 2021, vol. 252, pp. 927— 936. [In Russ]. DOI: 10.31897/PMI.2021.6.14.

27. Rodionov V. A., Tursenev S. A., Skripnik I. L., Ksenofontov Y. G. Results of the study of kinetic parameters of spontaneous combustion of coal dust. Journal of Mining Institute. 2020, vol. 246, pp. 617—622. [In Russ]. DOI: 10.31897/PMI.2020.6.3.

28. Borowski G., Smirnov Y. D., Ivanov A. V., Danilov A. S. Effectiveness of carboxymethyl cellulose solutions for dust suppression in the mining industry. International Journal of Coal Preparation and Utilization. 2020, vol. 1, no. 1, pp. 1—13. DOI: 10.1080/19392699.2020.1841177.

29. Harteis S. P., Alexander D. W., Harris M. L., Sapko M. J., Weiss E. S. Review of rock dusting practices in underground coal mines. Report of investigations (National Institute for Occupational Safety and Health). 2017, vol. 101, IC 9530. 97 p.

30. Luo Y., Wang D., Cheng J. Effects of rock dusting in preventing and reducing intensity of coal mine explosions. International Journal of Coal Science and Technology. 2017, vol. 4, no. 2, pp. 102—109.

31. Thakur P. Respirable coal dust, combustible gas and mine fire control. Advanced Mine Ventilation. 2019, pp. 377—398. DOI: 10.1016/B978-0-08-100457-9.00023-7.

32. Harris M. L., Sapko M. L. Floor dust erosion during early stages of coal dust explosion development. International Journal of Mining Science and Technology. 2019, vol. 29, pp. 825— 830. DOI: 10.1016/j.ijmst.2019.09.001.

33. Maier P., Hartlieb P., Brune J. F. Laboratory scaled coal dust explosions and physical test results for CFD explosion models. Berg Huettenmaenn Monatsh. 2020, vol. 165, no. 6. pp. 265—269. DOI:10.1007/s00501-020-00985-0.

34. Trubitsyna D. A.., Podobrazhin S. N. Smart systems for continuous automatic control of dust deposits in the network of mining workings of coal mines. Vestnik of safety in coal mining scientific center. 2021, no. 3, pp.6—17. [In Russ].

35. Trubitsyna D. A. Development of the system for continuous automatic control of dustiness and dust deposits intensity as a subsystem of the multifunctional safety system of a coal mine. Occupational Safety in Industry. 2021, no. 12, pp. 58—64. [In Russ]. DOI: 10.24000/04092961-2021-12-58-64.

36. Ren X., Xue D., Li Y., Hu X., Shao Z., Cheng W., Dong H., Zhao Y., Xin L., Lu W. Novel sodium silicate polymer composite gels for the prevention of spontaneous combustion of coal. Journal of Hazardous Materials. 2019, vol. 371, pp. 643—654. DOI: 10.1016/j.jhazmat.2019. 03.041.

37. Tsai Y.-T., Yang Y., Wang C., Shu C.-M., Deng J. Comparison of the inhibition mechanisms of five types of inhibitors on spontaneous coal combustion. International Journal of Energy Research. 2018, vol. 42, no. 3, pp. 1158—1171.

38. Jiang Z., Dou G. Preparation and characterization of chitosan grafting hydrogel for minefire fighting. ACS Omega. 2020, vol. 5, no. 5, pp. 2303—2309. DOI: 10.1021/acsomega.9b0355.

39. Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru [Federal Service for Environmental, Technological and Nuclear Supervision], available at: http://www.gosnadzor.ru/public/annual_reports/ (accessed 12.12.2022). [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.