Bibliography: 1. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Complex estimation of geotechnical risks in mine and underground construction. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 7—16. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-7-16.
2. Bedov A. I., Gabitov A. I., Domarova E. V., Kolesnikov A. S. Investigation of the stress-strain state of domical masonry vaults. Construction Materials and Products. 2023, vol. 6, no. 6. DOI: 10.58224/2618-7183-2023-6-6-6.
3. Abramyan S. G., Klyuev S. V., Emelyanova O. E., Oganesyan O. V., Chereshnev L. I., Akopyan G. O., Petrosian R. O. Improving reinforced concrete column strengthening techniques for reconstruction projects using composite jacketing formworks. Construction Materials and Products. 2023, vol. 6, no. 5. DOI: 10.58224/2618-7183-2023-6-5-1.
4. Kaverzneva T., Rodionov V., Skripnik I., Zhikharev S., Polyukhovich M. Determination of the miners’ individual injury risk as a result of the dynamic manifestation of rock pressure. E3S Web of Conferences. 2023, vol. 458, article 08011. DOI: 10.1051/e3sconf/202345808011.
5. Kulikova E. Yu., Konyukhov D. S. On the determination of buildings technological deformations in geotechnical construction. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 187—197. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-187-197.
6. Agapov V. P., Markovich A. S. Failure criterion for concrete under volumetric stress state conditions. Construction Materials and Products. 2023, vol. 6, no. 6. DOI: 10.58224/2618-7183-2023-6-6-7.
7. Mukhin A. A. On technical regulation of non-destructive control of pile continuity. Geotechnics. 2019, vol. 11, no. 2, pp. 80—89. [In Russ]. DOI: 10.25296/2221-5514-2019-11-2-80-89.
8. Neveykov A. N., Dedok V. N. The need for technical standardization of methods for controlling the continuity of piles in the Republic of Belarus. Bulletin of the Brest State Technical University. 2023, no. 1(130), pp. 50—55. [In Russ]. DOI: 10.36773/1818-1112-2023-130-1-50-55.
9. Lozovsky I. N. Control of the continuity of bored piles by the method of downhole ultrasound tomography. Transport construction. 2018, no. 7, pp. 6—9. [In Russ].
10. Shabalin V. A. Determination of the depth of laying and density of concrete bored pillars at bridge construction sites by the method of seismoacoustics (on an example of the construction of a bridge across the Golden Horn Bay in Vladivostok). Scientific, technical and economic cooperation of the APR countries in the XXI century. 2012, vol. 1, pp. 207—210. [In Russ].
11. Kulachkin B. I., Mitkin A. A. Innovations in geotechnics related to new approaches to assessing the quality of drilling piles. Bulletin of the Perm national research polytechnic university. Construction and architecture. 2016, vol. 7, no. 2, pp. 106—115. [In Russ].
12. Degaev E. N. Design solutions for ensuring the safety of production processes during the reconstruction of engineering communications. Bulletin of the Construction Technology. 2022, no. 3(1051), pp. 50—53. [In Russ].
13. Degaev E. N. Features of assessing the continuity of piles by the method of seismoacoustic flaw detection. Construction: Science and Education. 2022, vol. 12, no. 1, pp. 49-60. [In Russ]. DOI: 10.22227/2305-5502.2022.1.4.
14. Drovnikova E. M. Seismoacoustic flaw detection of the continuity of pile foundations. Dni studencheskoy nauki. Materialy nauchno-tekhnicheskoy konferentsii po itogam nauchno-issledovatel'skikh rabot studentov instituta inzhenerno-ekologicheskogo stroitel'stva i mekhanizatsii NIU MGSU [Days of Student Science. Materials of the scientific and technical conference based on the results of research works by students of the Institute of Environmental Engineering and Mechanization of the MGSU], Moscow, Izd-vo MGSU-MISI, 2020, pp. 207—209. [In Russ].
15. Ivanov A. Yu. The use of seismoacoustic flaw detection in the examination of building structures. Dni studencheskoy nauki. Materialy nauchno-tekhnicheskoy konferentsii po itogam nauchnoissledovatel'skikh rabot studentov instituta inzhenerno-ekologicheskogo stroitel'stva i mekhanizatsii NIU MGSU [Days of Student Science. Materials of the scientific and technical conference based on the results of research works by students of the Institute of Environmental Engineering and Mechanization of the MGSU], Moscow, Izd-vo MGSU-MISI, 2021, pp. 425—427. [In Russ].
16. Chernyakov A. V. Application of jet cementation of soils in conditions of historical development. Zhilishchnoe Stroitel'stvo. 2011, no. 9, pp. 24—26. [In Russ].
17. Galushkin I. V. Downhole seismic transmission — an important tool of engineering and geological surveys at the sites of construction of objects of increased responsibility. Engineering survey. 2021, vol. 15, no. 1-2, pp. 62—75. [In Russ].
18. Lozovsky I. N. Filtration of data of seismoacoustic control of pile continuity using continuous wavelet transform. Control. Diagnostics. 2022, vol. 25, no. 9(291), pp. 36—45. [In Russ]. DOI: 10.14489/td.2022.09.pp.036-045.
19. Qureshi H. A., Safdar M. Seismic performance of helical piles — A state of the art literature review. Arabian Journal of Geosciences. 2023, vol. 16, no. 423. DOI: 10.1007/s12517-023-11526-7.
20. Fayez A. F., Naggar M. H., Cerato A. B., Elgamal A. Seismic response of helical pile groups from shake table experiments. Soil Dynamics and Earthquake Engineering. 2022, vol. 152. DOI: 10.1016/j.soildyn.2021.107008.
21. Zhuoxin W., Miao C., Jiaxi L., Yao C. Performance-based seismic design method for pilesupported wharves with seismic isolation system. Disaster Prevention and Resilience. 2023, no. 2. DOI: 10.20517/dpr.2023.24.
22. Zheng C., Kouretzis G., Ding X. Seismic response of end-bearing piles in saturated soil to Pwaves. Acta Geotechnica. 2023, no. 18, pp. 5519—5533. DOI: 10.1007/s11440-023-01942-0.
23. Hossain M., Hamim O. F. Evaluation of cast-in-situ pile condition using pile integrity test. International Journal of Geotechnical and Geological Engineering. 2020, vol. 14, no. 7, pp. 150—155. DOI: 10.5281/zenodo.3931279.
24. Zhang S., Zhang J., Ma Y., Pak R. Y. Vertical dynamic interactions of poroelastic soils and embedded piles considering the effects of pile-soil radial deformations. Soils and Foundations. 2021, no. 61, pp. 16—34. DOI: 10.1016/j.sandf.2020.10.003.
25. Wu Z., Rao P., Cui J. Lateral response evaluation of existing pile by adjacent pile driving in claye slope. Geotechnical and Geological Engineering. 2023. DOI: 10.1007/s10706-023-02620-4.
26. Navale A., Solanki C. H., Sawant V. A., Jala Y. Nonlinear lateral response of pile group in clay using the modified cam clay soil model. Journal of Civil Engineering. Science and Technology. 2023, vol. 14, no. 1, pp. 35—51. DOI: 10.33736/jcest.4909.2023.
27. Xin L., Lixing W., Naggar M. Wenbing W., Hao L. Dynamic analysis of layered soil-pile interaction based on the nearly continuous model. Ocean Engineering. 2023, vol. 279, no. 1, article 114457. DOI: 10.1016/j.oceaneng.2023.114457.