Bibliography: 1. Leja J. Electrical characteristics of interfaces. Electrical double layer and zeta potential. Surface Chemistry of Froth Flotation. Plenum Press, New York, 1982, pp. 433—492. DOI: 10.1007/978-1-4615-7975-5_7.
2. Ignatkina V. A., Bocharov V. A., Aksenova D. D., Kayumov A. A. Zeta potential of the surface of ultrafine sulfides and floatability of minerals. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2017, no. 1, pp. 4—11. [In Russ]. DOI: 10.17073/0021-3438-2017-1-4-12.
3. Sorokin M. M. Flotatsiya. Modifikatory. Fizicheskie osnovy. Praktika [Flotation. Modifiers. Physical basics. Practice], Moscow, MISiS, 2016. 372 p.
4. Moslemi H., Gharabaghi M. A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry. 2017, vol. 47, pp. 1—18. DOI: 10.1016/j.jiec.2016.12.012.
5. Pozzo R. L., Iwasaki I. Pyrite-pyrrhotite grinding media interactions and their effects on media wear and flotation. Journal of The Electrochemical Society. 1989, vol. 136, no. 6, pp. 1734—1740. DOI: 10.1149/1.2097001.
6. Zhao Cao, Peng Wang, Wen-Bo Zhang, Xiao-Bo Zeng, Yong-Dan Cao Mechanism of sodium sulfide on flotation of cyanide-depressed pyrite. Transactions of Nonferrous Metals Society of China. 2020, vol. 30, no. 2, pp. 484—491. DOI: 10.1016/s1003-6326(20)65228-1.
7. Bao Guo, Yongjun Peng, Gretel Parker Electrochemical and spectroscopic studies of pyrite–cyanide interactions in relation to the depression of pyrite flotation. Minerals Engineering. 2016, vol. 92, pp. 78—85. DOI: 10.1016/J.MINENG.2016.03.003.
8. Ejtemaei M., Nguyen A. V. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate. Minerals Engineering. 2017, vol. 100, pp. 223—232. DOI: 10.1016/J. MINENG.2016.11.005.
9. Nicol M. The electrochemistry of chalcopyrite in alkaline solutions. Hydrometallurgy. 2019, vol. 187, pp. 134—140. DOI: 10.1016/j.hydromet.2019.05.016.
10. Plaksin I. N., Shafeev R. Sh., Chanturiya V. A. The relationship of the energy structure of mineral crystals with their flotation properties. Trudy VIII Mezhdunarodnogo kongressa po obogashcheniyu poleznykh iskopaemykh. T. 2 [Proceedings of the VIII International Congress on Mineral Enrichment, vol. 2] Leningrad, Mekhanobr, 1969, pp. 235—245. [In Russ].
11. Hu Yue-Hua, Sun Wei Electrochemistry of flotation of sulfide minerals. Beijing: Tsinghua University Press, 2009, 306 p.
12. Dan Liu, Yi-Jie Wang, Yong-Jun Xian, Shu-Ming Wen Electronic structure and flotability of gold-bearing pyrite. A density functional theory study. Journal of Central South University. 2017, vol. 24, pp. 2288–2293. DOI: 10.1007/S11771-017-3640-4.
13. Kakovskiy I. A. On the kinetics of oxidation of mixtures of sulfide minerals by oxygen in aqueous solutions. Obogashchenie Rud. 1980, no. 3, pp. 3—6. [In Russ].
14. Mitrofanov S. I., Ryskin M. Ya. Electrochemical properties of minerals and adsorption of collecting reagents. Trudy VIII Mezhdunarodnogo kongressa po obogashcheniyu poleznykh iskopaemykh. T. 2 [Proceedings of the VIII International Congress on Mineral Enrichment, vol. 2], Leningrad, Mekhanobr, 1969, pp. 270—280. [In Russ].
15. Chanturiya V. A., Vigdergauz V. E. Elektrokhimiya sul'fidov. Teoriya i praktika flotatsii [Electrochemistry of sulfides. Theory and practice of flotation], Moscow, Ruda i metally, 2008, 272 p.
16. Abramov A., Önal G., Dogan Z. Physico-chemical models for activation, flotation and depression of pyrite in copper flotation. Mineral Processing on the Verge of the 21st Century. 2017. DOI: 10.1201/9780203747117.
17. Nicol M., Suchun Zhang, Tjandrawan V. The electrochemistry of pyrite in chloride solutions. Hydrometallurgy. 2018, vol. 178, pp. 116—123. DOI: 10.1016/j.hydromet.2018.04.013.
18. Dongping Tao, Yue Wang, Lin Li An electrochemical study of surface oxidation and collectorless flotation of pyrite. International Journal of Electrochemical Science. 2018, vol. 13, pp. 5971—5982. DOI: 10.20964/2018.06.32.
19. Buswell A. M., Nicol M. J. Some aspects of the electrochemistry of the flotation of pyrrhotite. Journal of Applied Electrochemistry. 2002, vol. 32, pp. 1321–1329. DOI: 10.1023/A: 1022664310845.
20. Alireza Javadi Sulphide minerals: surface oxidation and selectivity in complex sulphide ore flotation. Doctoral thesis. October 2015. Luleå University of Technology, Sweden. 48 p.
21. Kakovskiy I. A., Kosikov V. M. On the quantitative assessment of the kinetics of oxidation of sulfide minerals in solution. Obogashchenie Rud. 1974, no. 1, pp. 28—31. [In Russ].
22. Yianatos J., Carrasco C., Vinnett L., Rojas I. Pyrite recovery mechanisms in rougher flotation circuits. Minerals Engineering. 2014, vol. 66–68, pp. 197–201. DOI: 10.1016/j. mineng.2014.03.020.
23. Zhao Cao, Xumeng Chen, Yongjun Peng The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Minerals Engineering. 2018, vol. 119, pp. 93–98. DOI: 10.1016/j.mineng.2018.01.029.
24. Yasemin Öztürk, Özlem Bıçak, Elif Özdemir, Zafir Ekmekçi Mitigation negative effects of thiosulfate on flotation performance of a Cu-Pb-Zn sulfide ore. Minerals Engineering. 2018, vol. 122, pp. 142—147. DOI: 10.1016/j.mineng.2018.03.034.
25. Yufan Mua, Yongjun Peng, Lauten R. A. The depression of pyrite in selective flotation by different reagent systems — A Literature review. Minerals Engineering. 2016, vol. 96—97, pp. 143—156. DOI: 10.1016/j.mineng.2016.06.018.