Bibliography: 1. Khozin V. G., Tsyganova E. A. Role of the construction industry in the implementation of a federal project «The closedcycle economy». Expert: theory and practice. 2023, no. 1(20), pp. 147—159. [In Russ]. DOI: 10.51608/26867818_2023_1_147.
2. Gismatullina Yu. A. Synthesis of cellulose nitrates from highly renewable non-wood raw materials. Polzunovskiy vestnik. 2018, no. 1, pp. 125—130. [In Russ]. DOI: 10.25712/ ASTU.2072-8921.2018.01.024.
3. Zhegrov E. F., Milekhin Yu. M., Berkovskaya E. V. Khimiya i tekhnologiya ballistitnykh porokhov, tverdykh raketnykh i spetsial'nykh topliv. T. 2. Tekhnologiya: Monografiya [Chemistry and technology of ballistic powders, solid rocket and special fuels. Vol. 2. Technology. Monograph], Moscow, RITS MGUP im. Fedorova, 2011, 551 p.
4. Romanova M. A., Valishina Z. T., Ibragimov R. A., Kostochko A. V. Neutralization of technological wastewater sludge from cellulose nitrate production. Message 1. Herald of technological university. 2017, vol. 20, no. 9, pp. 127—130. [In Russ].
5. Patokin D. A., Vasiliev V. V. Utilization of waste from the production of energy-saturated materials. Innovatsionnye tekhnologii zashchity okruzhayushchey sredy v sovremennom mire: Materialy Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem molodykh uchenykh i spetsialistov [Innovative technologies of environmental protection in the modern world: materials of the All-Russian scientific Conference with international participation of young scientists and specialists], Kazan, KazNITU, 2021, pp. 1961—1967. [In Russ].
6. Valishina Z. T., Romanova M. A., Gafarova G. H., Kostochko A. V. Utilization of cellulose nitrate production waste. Message 2. Herald of technological university. 2017, vol. 20, no. 9, pp. 140—143. [In Russ].
7. Fernandez-Lopez C., Posada-Baquero R., Ortega-Calvo J.-J. Nature-based approaches to reducing the environmental risk of organic contaminants resulting from military activities. Science of the Total Environment. 2022, vol. 843, article 157007. DOI: 10.1016/j.scitotenv.2022.57007.
8. Soumya Chatterjee, Utsab Deb, Sibnarayan Datta, Clemens Walther, Gupta D. K. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chemosphere. 2017, vol. 184, pp. 438—451. DOI: 10.1016/j.chemosphere.2017.06.008.
9. Litvinova T. E., Suchkov D. V. An integrated approach to the utilization of technogenic waste of the mineral resource complex. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 331—348. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_331.
10. Petrov D. S., Korotaeva A. E., Pashkevich M. A., Chukaeva M. A. Assessment of heavy metal accumulation potential of aquatic plants for bioindication and bioremediation of aquatic environment. Environmental Monitoring and Assessment. 2022, vol. 195, no. 1, article 122. DOI: 10.1007/s10661-022-10750-0.
11. Annikov V. E., Akinin N. I., Mikheev D. I., Rotenberg E. V. Assessment of environmental safety in the disposal of artillery ammunition. Explosion technology. 2014, no. 111-68, pp. 275—282. [In Russ].
12. Akinin N. I., Annikov V. E., Mikheev D. I., Trunin V. V. Hypotoxic powder–water gel compositions. MIAB. Mining Inf. Anal. Bull. 2018, no. 2, pp. 81—88. [In Russ]. DOI: 10.25018/ 0236-1493-2018-2-0-81-88.
13. Annikov V. E., Gubaidullin V. M., Brigadin I. V., Krasnov S. A., Golub M. V. Results of the comparative impact of explosions of gelpore, nitronite and ammonite charges during the cutting of oversized blocks. Explosion technology. 2018, no. 121-78, pp. 111—123. [In Russ].
14. Khomeriki D., Khomeriki S., Mikhelson R., Chikhradze N., Khvadagiani A. Production of industrial explosive substances on the basis of the powders and solid rocket fuel released from the utilization of the expired ammunition. Procedia Earth and Planetary Science. 2015, vol. 15, pp. 738—741. DOI: 10.1016/j.proeps.2015.08.117.
15. Wolf I. G., Ibragimov E. N., Garifov D. R., Sobakinskikh A. N. Development of an economical industrial explosive using recyclable gunpowder and production waste. Al'manakh Permskogo voennogo instituta voysk natsional'noy gvardii. 2022, no. 2(6), pp. 17—22. [In Russ].
16. Vaganov K. A. Results of the use of acoustic powder pressure generators for the intensification of oil production. Oil & Gas Exposition. 2014, no. 1(33), pp. 36—37. [In Russ].
17. Belozerov V. B. Open fracturing of the Bazhenov formation and prospects for its development. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2018, vol. 329, no. 1, pp. 150—158. [In Russ].
18. Davydov D. F., Ryabov A. V., Fedoseev V. V., Matseevich B. V., Shchukin Yu. G. Processing (utilization) of ammunition and gunpowder and adaptation of their utilization products for industrial purposes. Russian Mining Industry Journal. 2018, no. 3 (139), pp. 76—78. [In Russ].
19. Mukhametov A. A., Zagidullin R. N., Voronin A. V., Ibragimov R. A., Kotova O. I. Development of technology for neutralization of wastewater produced by Avangard. Ekologicheskie problemy Yuzhnogo Urala i puti ikh resheniya. Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii [Ecological problems of the Southern Urals and ways to solve them. Materials of the All-Russian Scientific and practical conference], Sibay, 2017, pp. 129—131. [In Russ].
20. Viktorov S. D., Frantov A. E., Zakalinskiy V. M. Teoriya — tekhnika — tekhnologiya vzryvnykh rabot s primeneniem konversionnykh VV v protsessakh gornogo proizvodstva [Theory — technique — technology of blasting operations using conversion explosives in mining processes], Moscow, IPKON RAN, 2019, 384 p.
21. Sahakyan Yu. Z., Grigoriev A. V., Vasenkina E. Yu., Kravets E. A., Faddeev A. M. Directions for improving of environmental legislation in the coal mining industry of the Russian Federation. Ugol’. 2020, no. 11 (1136), pp. 58—63. [In Russ]. DOI: 10.18796/0041-5790-2020-11-58-63.
22. Petrova T. A., Rudzish E. Types of soil improvers for reclamation of mining-disturbed lands. MIAB. Mining Inf. Anal. Bull. 2021, no. 4, pp. 100—112. [In Russ]. DOI: 10.25018/0236_ 1493_2021_4_0_100.
23. Lubenskaya N. A., Chmyhalova S. V., Grishin V. Yu. Prerequisites for the formation and development of the market of services for recultivation of disturbed lands. MIAB. Mining Inf. Anal. Bull. 2021, no. 10-1, pp. 88—100. [In Russ]. DOI: 10.25018/0236_1493_2021_101_0_88.
24. Ivanov A. N., Ignatieva M. N., Yurak V. V., Pustokhina N. G. Problems of restoration of lands disturbed during the development of mineral deposits. News of the Ural state mining university. 2020, no. 4(60). pp. 218—227. [In Russ]. DOI: 10.21440/2307-2091-2020-4-218-227.
25. Semyachkov A. I., Pochechun V. A., Semyachkov K. A. Hydrogeoecological conditions of technogenic groundwater in waste disposal facilities. Journal of Mining Institute. 2023, vol. 260, pp. 168—179. [In Russ]. DOI: 10.31897/PMI.2023.24.
26. Smirnov Y. D., Suchkov D. V., Danilov A. S., Goryunova T. V. Artificial soils for restoration of disturbed land productivity. Eurasian Mining. 2021, vol. 36, no. 2, pp. 92—96. DOI: 10.17580/em.2021.02.19.
27. Ociepa E., Mrowiec M., Lach J. Influence of fertilisation with sewage sludge-derived preparation on selected soil properties and prairie cordgrass yield. Environmental Research. 2017, vol. 156, pp. 775—780. DOI: 10.1016/j.envres.2017.05.003.
28. Osokin N. A., Zolotova I. Yu., Nikitushkina Yu. V. Recultivation of disturbed lands with the use of industrial waste: assessment of potential for Russian regions on the example of ash and slag thermal power plants. Ecology & Industry of Russia. 2022, vol. 26, no. 6, pp. 46—52. [In Russ]. DOI: 10.18412/1816-0395-2022-6-46-52.
29. Kalinina E. V., Rudakova L. V. Reduction of toxic properties of soda sludge with their subsequent disposal. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2018, vol. 329, no. 6, pp. 85—96. [In Russ].
30. Vodoleev A. S., Andreeva O. S., Zakharova M. A., Targaeva E. E. Rehabilitation of technogenically disturbed territories of agglomeration production. Ferrous Metallurgy. Bulletin of Scientific, Technical and Economical Information. 2018, no. 8(1424), pp. 92—99. [In Russ].
31. Pashkevich M. A., Petrova T. A., Rudzisha E. Assessment of the potential possibility of using lignin slurries for forestry recultivation of disturbed lands. Journal of Mining Institute. 2019, vol. 235, pp. 106—112. [In Russ]. DOI: 10.31897/PMI.2019.1.106.
32. Turner T., Wheeler R., Oliver I. W. Evaluating land application of pulp and paper mill sludge. A review. Journal of Environmental Management. 2022, vol. 317 (115439). DOI: j.jenvman.2022.115439.
33. Bogdanov A. V., Kachor O. L., Shatrova A. S., Chaika N. V. Recultivation of lands contaminated with waste from the mining industry using waste from the pulp and paper industry. Proceedings of the Siberian department of the Section of Earth sciences of the Russian academy of natural sciences. 2016, no. 2 (55), pp. 96—102. [In Russ]. DOI: 10.21285/0301-108Х-2016-55-2-96-102.
34. Matveeva V. A., Smirnov Y. D., Suchkov D. V. Industrial processing of phosphogypsum into organomineral fertilizer. Environmental Geochemistry and Health. 2022, vol. 44, no. 5, pp. 1605—1618. DOI: 10.1007/s10653-021-00988-x.
35. Petrova T. A., Rudzish E. Recultivation of technogenically disturbed lands with the use of sewage sludge as meliorants. Journal of Mining Institute. 2021, vol. 251, pp. 767—776. [In Russ]. DOI: 10.31897/PMI.2021.5.16.
36. Rudzish E., Petrova T. A. The evaluation of sewage sludge as soil amendment for postmining land rehabilitation. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-2, pp. 127—134. [In Russ]. DOI: 10.25018/0236_1493_2022_102_0_127.
37. Krasavtseva E. A., Gorbacheva T. T., Ivanova L. A., Maksimova V. V. Municipal wastewater in experiments on recultivation of waste from the enrichment of loparite ores. Water and Ecology: Problems and Solutions. 2021, no. 3(87), pp. 44—55. [In Russ]. DOI: 10.23968/23053488.2021.26.3.44-55.
38. Mitrakova N. V., Khairullina E. A., Blinov S. M., Perevoshchikova A. A. Efficiency of recultivation of acid sulfate soils in coal mining areas. Journal of Mining Institute. 2023, vol. 260, pp. 266—278. [In Russ]. DOI: 10.31897/PMI.2023.31.
39. Matveeva V., Lytaeva T., Danilov A. Application of steel-smelting slags as material for reclamation of degraded lands. Journal of Ecological Engineering. 2018, vol. 19, no. 6, pp. 97—103. DOI: 10.12911/22998993/93511.
40. Demakov V. A., Maksimov A. Yu., Maksimova Yu. G., Khalitova A. I., Shilova A. V., Litasova A. S., Pavlova Yu. A., Kozlov S. V., Ovechkina G. V. Studying the processes of microbial metabolism of organic nitro compounds and developing an effective biocatalyst for their biotransformation and biodegradation. Perm Federal Research Centre Journal. 2020, no. 2, pp. 23—35. [In Russ]. DOI: 10.7242/2658-705X/2020.2.3.
41. Sozina I. D., Danilov A. S. Microbiological remediation of oil-contaminated soils. Journal of Mining Institute. 2023, vol. 260, pp. 297—312. [In Russ]. DOI: 10.31897/PMI.2023.8.
42. Saratovskikh E. A., Shcherbakova V. A., Yarullin R. N. Destruction of nitrated cellulose by Fusarium solani fungi. Applied biochemistry and microbiology. 2018, vol. 54, no. 1, pp. 55—62. [In Russ]. DOI: 10.7868/S0555109918010075.
43. Zabokritskiy A. A., Savinykh D. Yu. Study of a complex of physico-chemical and biotechnological parameters providing optimal conditions for biological destruction of nitrocellulose. Woodworking industry. 2018, no. 4, pp. 90—94. [In Russ].
44. Pankratov A. A., Cherenkov P. G., Lifshits A. B. Science and industry: experience of interaction in solving problems of chemical safety. Chemical Safety Science. 2017, vol. 1, no. 1, pp. 238—255. [In Russ]. DOI: 10.25514/CHS.2017.1.11448.
45. Gladchenko M. A., Gaydamaka S. N., Murygina V. P., Livshits A. B., Cherenkov P. G. Investigation of the process of solid-phase aerobic fermentation of nitrocellulose-containing sewage sludge by laboratory modeling. Khimicheskaya fizika. 2015, vol. 34, no. 6, pp. 30—37. [In Russ]. DOI: 10.7868/S0207401X15060047.
46. Gladchenko M. A., Rogozin A. D., Cherenkov P. G., Murygina V. P., Gaydamaka S. N., Lifshits A. B. Regulation of physico-chemical and biotechnological parameters of the process of liquid-phase aerobic degradation of nitrocellulose-containing sewage sludge. Khimicheskaya fizika. 2016, vol. 35, no. 6, pp. 78—84. [In Russ]. DOI: 10.7868/S0207401X16060054.
47. Bhanot P., Celin S. M., Sreekrishnan T. R., Kalsi A., Sahai S. K., Sharma P. Application of integrated treatment strategies for explosive industry wastewater—A critical review. Journal of Water Process Engineering. 2020, vol. 35, article 101232. DOI: 10.1016/j.jwpe.2020.101232.
48. Kulikov A. V., Yarullin R. N., Supyrev A. V., Sidorov M. I., Emel'yanov I. A. Patent RU 2015123264, 16.06.2015. [In Russ].
49. Semenov V. M. Carbon functions in mineralization-immobilization nitrogen turnover in soil. Agricultural Chemistry. 2020, no. 6, pp. 78—96. [In Russ]. DOI: 10.31857/S0002188120060101.
50. Hodson M. E., Mahmuda Islam, Matty Metcalf, Amy C. M. Wright Amendments of waste ochre from former coal mines can potentially be used to increase soil carbon persistence. Applied Geochemistry. 2023, vol. 151, article 105618. DOI: 10.1016/j.apgeochem.2023.105618.