Modeling of the liquid-solid particle systemin the coupling solution of the task in rocky dem and ansys fluent

Currently, to increase the efficiency of grinding mineral raw materials is an urgent problem in the mining industry. Certain dependence is for each granulometric composition of the grinded material and grinding bodies, as well as a number of other factors, that should correspond to the greatest efficiency of the grinding process. The creation of grinding models using modern technologies will further help to improve the operation of grinding equipment to reduce the energy intensity of the process and to improve the quality of the materials obtained. The motion of the medium in a ball mill is modeled using a numerical algorithm known as the discrete element method (DEM). On the other hand, many processes in the mining industry are associated with the movement of particles in the liquid flow, for example, the process of wet grinding in a mill is modeled by the method of computational fluid dynamics (CFD).The purpose of this article is to study the possibility of using the coupling DEM-CFD approach for modeling liquid medium-particle systems, followed by applying the results obtained for modeling wet grinding in ball mills. As a result of numerical modeling, it was possible to evaluate the possibilities of solving the problems of studying the processes of reducing the size of mineral particles using the methods of coupling the Rocky DEM and ANSYS Fluent software, and to obtain a graphical image of the interaction of the upward flow of liquid with solid particles. The method of coupling the Rocky DEM and ANSYS Fluent software made it possible to estimate the hydrodynamic parameters for the following types of interactions: when a liquid interacts with solid spherical particles having different physical properties; when various liquids interact with solid spherical particles of different sizes.

Keywords: coupling DEM-CFD approach, liquid-solid particle system, computational fluid dynamics method, discrete element method, two-way data exchange, graphical image, Rocky DEM, ANSYS Fluent.
For citation:

Opalev A. S., Palivoda A. A. Modeling of the liquid-solid particle systemin the coupling solution of the task in rocky dem and ansys fluent. MIAB. Mining Inf. Anal. Bull. 2022;(12-1):78-93. [In Russ]. DOI: 10.25018/0236_1493_2022_121_0_78.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 78-93
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2022_121_0_78
Article receipt date: 25.03.2022
Date of review receipt: 24.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

A.S. Opalev1, Cand. Sci. (Eng.), Leading Researcher, e-mail: a.opalev@ksc.ru, ORCID ID: 0000-0001-5120-7595,
A.A. Palivoda1, Engineer, e-mail: 89533072508@mail.ru, 
1 Mining Institute, Kola Scientific Centre of Russian Academy of Sciences, 184209, Apatity, Russia.

 

For contacts:

A.S. Opalev, e-mail: a.opalev@ksc.ru.

Bibliography:

1. Boykov A. V., Savel'ev R. V., Payor V. A. Computer simulation in mining industry. Sbornik izbrannykh statey po materialam nauchnykh konferentsiy GNII «Natsrazvitie» [Collection of selected articles based on the materials of scientific conferences of the National Research Institute «National Development»], Saint-Petersburg, 2019, pp. 31—34. [In Russ].

2. Feoktistov A. Yu., Kamenetskiy A. A., Blekhman L. I., Vasil'kov V. B., Skryabin I. N., Ivanov K. S. Application of the discrete element method for modeling processes in the mining and metallurgical industry. Journal of Mining Institute. 2011, vol. 192, pp. 145. [In Russ].

3. Chitalov L. S., Lvov V. V. Comminution and mineral processing modeling software review. Sbornik izbrannykh statey po materialam nauchnykh konferentsiy GNII «Natsrazvitie» [Collection of selected articles based on the materials of scientific conferences of the National Research Institute «National Development»], Saint-Petersburg, 2020, pp. 1517—1523. [In Russ].

4. Rosenkranz S., Breitung-Faes S., Kwade A. Experimental investigations and modelling of the ball motion in planetary ball mills. Powder Technology. 2011, vol. 212, no. 1, pp. 224—230. DOI: 10.1016/j.powtec.2011.05.021.

5. Bian X., Wang G., Wang H., Wang S., Lv W. Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation. Minerals Engineering. 2017, vol. 105, pp. 22—35. DOI: 10.1016/j.mineng.2016.12.014.

6. Powell M. S., Weerasekara N. S., Cole S., Laroche R. D., Favier J. DEM modelling of liner evolution and its influence on grinding rate in ball mills. Minerals Engineering. 2011, vol. 24, no. 3-4, pp. 341—351. DOI: 10.1016/j.mineng.2010.12.012.

7. Khakhalev P. A., Bogdanov V. S., Kovshechenko V. M. Kinetic parameters of grinding media in ball mills with various liner design and mill speed based on DEM modeling. IOP Conference Series: Materials Science and Engineering. 2018, vol. 327, no. 4, article 042049. DOI: 10.1088/1757-899X/327/4/042049.

8. Yusupov G. A. Modeling of a jaw crusher by the method of discrete elements. Aktual'nye problemy povysheniya effektivnosti i bezopasnosti ekspluatatsii gornoshakhtnogo i neftepromyslovogo oborudovaniya. 2017, vol. 1, pp. 188—191. [In Russ].

9. Minasyan D. G., Eloeva A. S., Nazarov S. G., Skvortsov P. A. Comparison of the crushed material movement model in the body of a vertical centrifugal mill. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 1, pp. 119—124. [In Russ]. DOI: 10.21177/1998-4502-2021-13-1-119-124.

10. Beloglazov I. I., Ikonnikov D. A. Application of the discrete element method for modeling of rocks crushing in a jaw crusher. Journal of Instrument Engineering. 2016, vol. 59, no. 9, pp. 780—786. [In Russ]. DOI: 10.17586/0021-3454-2016-59-9-780-786.

11. Nagata Yu, Tsunazawa Yuki, Tsukada Kouji, Yaguchi Yuichi, Ebisu Yosuke, Mitsuhashi Kohei, Tokoro Chiharu Effect of the roll stud diameter on the capacity of a high-pressure grinding roll using the discrete element method. Minerals Engineering. 2020, vol. 154, article 106412. DOI: 10.1016/j.mineng.2020.106412.

12. Li Yaoyu, Bao Jie, Yu Aibing, Yang Runyua ANN prediction of particle flow characteristics in a drum based on synthetic acoustic signals from DEM simulations. Chemical Engineering Science. 2021, vol. 246, article 117012. DOI: 10.1016/j.ces.2021.117012.

13. El-Emam M. A., Han C. A, Dong S. W., Zhou L. Rocky DEM-CFD simulation for realistic granular flowin an aerodynamic separating device. 2019 ASABE Annual International Meeting. Boston, 2019. DOI: 10.13031/aim.201900387.

14. El-Emam M. A., Shi W., Zhou L. CFD-DEM simulation and optimization of gas-cyclone performance with realistic macroscopic particulate matter. Advanced Powder Technology. 2019, vol. 30, no. 11, pp. 2686—2702. DOI: 10.1016/j.apt.2019.08.015.

15. Chu K. W., Wang B., Xu D. L., Chen Y. X., Yu A. B. CFD-DEM simulation of the gas–solid flow in a cyclone separator. Chemical Engineering Science. 2011, vol. 66, no. 5, pp. 834—847. DOI: 10.1016/j.ces.2010.11.026.

16. Bna S., Ponzini R., Cestari M., Cavazzoni C., Cottini C., Benassi A. Investigation of particle dynamics and classification mechanism in a spiral jet mill through computational fluid dynamics and discrete element methods. Powder Technology. 2020, vol. 364, pp. 746—773. DOI: 10.1016/j.powtec.2020.02.029.

17. Beloglazov I. I., Kuskova Y. V. Simulation of roasting metallurgical concentrates in fluidized bed using CFD-DEM. IOP Conference Series: Materials Science and Engineering. 2017, vol. 221, no. 1, article 012017. DOI: 10.1088/1755-1315/221/1/012017.

18. Kurganova N. V., Filin M. A., Chernyaev D. S., Shaklein A. G., Namiot D. E. Digital twins’ introduction as one of the major directions of industrial digitalization. International Journal of Open Information Technologies. 2019, vol. 7, no. 5, pp. 105. [In Russ].

19. Shibanov D. A., Ivanov S. L., Ivanov A. A. Digital doubles in mining engineering as a tool to improve the efficiency of mining machinery operation. MIAB. Mining Inf. Anal. Bull. 2022, special edition 3, 16 p.

20. Butko A. O., Kuznetsov P. M., Khoroshko L. L. Creating a digital twin of crushing and milling equipment reconditioning process. MIAB. Mining Inf. Anal. Bull. 2020, no. 8, pp. 130—144. [In Russ]. DOI: 10.25018/0236-1493-2020-8-0-130-144.

21. Matveev I. A., Yakovlev B. V., Eremeeva N. G. Modeling particle flow in active zone of large-angle concentrator. MIAB. Mining Inf. Anal. Bull. 2021, no. 7, pp. 146—153. [In Russ]. DOI: 10.25018/0236_1493_2021_7_0_146.

22. Krylatova S. R., Matveev A. I., Lebedev I. F., Yakovlev B. V. Modeling of particle motion in spiral pheumoseparator by statistical methods. Mathematical notes of NEFU. 2018, vol. 25, no. 1, pp. 90—97. [In Russ].

23. le Roux J. D., Steinboeck A., Kugi A., Craig I. K. Steady-state and dynamic simulation of a grinding mill using grind curves. Minerals Engineering. 2020, vol. 152, no. 11, article 106208. DOI: 10.1016/j.mineng.2020.106208.

24. Moraga C., Kracht W., Ortiz J. M. Process simulation to determine blending and residence time distribution in mineral processing plants. Minerals Engineering. 2022, vol. 187, no. 12, article 107807. DOI: 10.1016/j.mineng.2022.107807.

25. Kharlamov S. N., Dzhankhorbani M. Numerical prediction of flow of viscous drip liquid mixture with solid particles in inlet field of eccentric annular tube sand cleaning them from sludge. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022, vol. 333, no. 6, pp. 18—41. [In Russ]. DOI: 10.18799/24131830/2022/6/3615.

26. Zhang Chengwei, Zou Yudong, Gou Dazhao, Yu Aibing, Yang Runyu Experimental and numerical investigation of particle size and particle strength reduction in high pressure grinding rolls. Powder Technology. 2022, vol. 410, article 117892. DOI: 10.1016/j.powtec.2022.117892.

27. Beloglazov I. I., Sabinin D. S., Nikolaev M.Yu. Modeling the disintegration process for ball mills using dem. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 268—282. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_268.

28. Nagata Yu, Minagawa Masayaa, Hisatomi Shosei, Tsunazawa Yuki, Okuyama Kyoko, Iwamoto Motonori, Sekine Yasuyoshi, Tokoro Chiharu Investigation of optimum design for nanoparticle dispersion in centrifugal bead mill using DEM-CFD simulation. Advanced Powder Technology. 2019, vol. 30, no. 5, pp. 1034—1042. DOI: 10.1016/j.apt.2019.02.018.

29. Boikov A., Savelev R., Payor V., Potapov A. Universal approach for dem parameters calibration of bulk materials. Symmetry. 2021, vol. 13, no. 6, article 1088. DOI: 10.3390/sym13061088.

30. Westbrink F., Elbel A., Schwung A., Ding S. X. Optimization of DEM parameters using multi-objective reinforcement learning. Powder Technology. 2021, vol. 379, pp. 602—616. DOI: 10.1016/j.powtec.2020.10.067.

31. Lvov V. V. Chitalov L. S. Modern trends in the design of comminution processes and equipment for non-ferrous metals ores. Tsvetnye Metally. 2020, no. 10, pp. 20—26. [In Russ]. DOI: 10.17580/tsm.2020.10.03.

32. Ai J., Chen J. F., Rotter J. M., Ooi J. Y. Assessment of rolling resistance models in discrete element simulations. Powder Technology. 2011, vol. 206, no. 3. DOI: 10.1016/j.powtec.2010. 09.030.

33. Walton O. R., Braun R. L. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology. 1986, vol. 30, no. 5. DOI: 10.1122/1.549893.

34. Crowe C. T., Schwarzkopf J. D., Sommerfeld M., Tsuji Y. Multiphase flows with droplets and particles. Multiphase Flows with Droplets and Particles. 2011. DOI: 10.1201/b11103.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.