Multi-channel optical radiation frequency stabilization system in geoplositioning systems of mine surveying and geodetic equipment

In this paper the features of the modernization of the frequency reference device, potentially suitable for applying the design breakdown and tracking the position of equipment during mountain and landscape marking of mining and quarry developments have been discussed. The possibilities of operation of new systems in conjunction with the use of satellite geopositioning systems, tracking the position and movement of mining facilities are presented. The basic principles of the operation of the reference optical frequency source of the optical frequency reference scheme are presented also. The created feedback system, potentially applicable in signal processing receivers, is described. The feature of this system is the presence of an optical selective element, which makes it possible to simultaneously stabilize several sources of laser radiation through one high-Q optical cavity, which, in turn, makes it possible to reduce the weight and size of the terminal devices, and also simplifies the adjustment of these devices in the field. The new circuit for feedback auto-recovery system is proposed. Due to this property the system allows extended or potentially infinite, relative to correction signals, operation. The comparison of optical sources of the frequency reference with different weight and size characteristics is made. The obtained optical beats between large systems and the proposed compact multichannel system have been analyzed also.

Keywords: terrain marking, topography, geopositioning, mountain landscape, frequency reference, satellite geodesy.
For citation:

Gurov M. G., Gurova E. G. Multi-channel optical radiation frequency stabilization system in geoplositioning systems of mine surveying and geodetic equipment. MIAB. Mining Inf. Anal. Bull. 2023;(10-1):280—291. [In Russ]. DOI: 10.25018/0236_1493_2023_101_0_280.

Acknowledgements:
Issue number: 10
Year: 2023
Page number: 280-291
ISBN: 0236-1493
UDK: 539.1.043, 681.2.082, 681.518(075.32)
DOI: 10.25018/0236_1493_2023_101_0_280
Article receipt date: 18.04.2023
Date of review receipt: 24.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Gurov M. G.1, Researcher, e-mail: goorovmg@mail.ru;
Gurova E. G.2, associate professor, e-mail: lena319@mail.ru;
1 Federal State Unitary Enterprise “All-Russian Research Institute of Physical, Technical and Radio Engineering Measurements”, Mendeleevo village, Mendeleevo, Moscow region, 141570, Russia;
2 Novosibirsk State Technical University, 20 K. Marx Ave., Novosibirsk, 630073 Russia.

 

For contacts:
Bibliography:

1. Bondarescu R., Schärer A., Lundgren A., Hetényi G., Houlié N., Jetzer P., Bondarescu M. Ground-based optical atomic clocks as a tool to monitor vertical surface motion. Geophys. J. Int. 2015, vol. 202, pp. 1770–1774. DOI: 10.1093/gji/ggv246.

2. Thompson A., Moran J., Swenson G. Interferometry and Synthesis in Radio Astronomy. Springer, Cham. 2017, p. 872. DOI: 10.1007/978−3-319−44431−4.

3. Fujieda M., Piester D., Gotoh T., Becker J., Aida M., Bauch A. Carrier-phase twoway satellite frequency transfer over a very long baseline. Metrologia. 2014, vol. 51, pp. 253–262. DOI:10.1088/0026−1394/51/3/253.

4. Alenichev V. M. Formation of geoinformation for diagnosing the state of a mining enterprise. MIAB. Mining Inf. Anal. Bull. 2021, no. 5−1, pp. 217–225. [In Russ]. DOI: 10.2 5018/0236_1493_2021_51_0_217.

5. Vorotyntseva I. A., Smirnov P. A., Danilchenko A. L., Yakubov M. M. Interpretation of geological data at the stage of geological exploration of a gold deposit. MIAB. Mining Inf. Anal. Bull. 2021, no. 11, pp. 45–55. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_45.

6. Antonov V. A., Alenichev V. M. About GEODATA monitoring and modeling of a productive layer of a gold-bearing placer. Markshejderiya i nedropol’zovanie. 2018, no. 3, pp. 56–59. [In Russ].

7. Voronov G. A. Comparison and analysis of the results of the postprocessing of satellite observation data using GLONASS and GPS navigation systems. MIAB. Mining Inf. Anal. Bull. 2018, no. 9−1, pp. 111–117. [In Russ]. DOI: 10.25018/0236-1493-2018-9-0−111−117.

8. Nagovicyn O. V. Lukichev S. V. Modern state and prospects of development of mining and geological systems. MIAB. Mining Inf. Anal. Bull. 2017. no. 23, pp. 53–67. [In Russ].

9. Tanaka Y. and Katori H. Exploring potential applications of optical lattice clocks in a plate subduction zone. Journal of Geodesy. 2021, vol. 95. pp. 93.

10. Takamoto M., Ushijima I., Ohmae N., Yahagi T., Kokado K., Shinkai H., and Katori H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 2020, vol. 14, pp. 411–415. DOI:10.1038/s41566-020-0619-8.

11. McGrew W. F., Zhang X., Fasano R. J., Schäffer S. A., Beloy K., Nicolodi D., Brown R. C., Hinkley N., Milani G., Schioppo M., Yoon T. H., Ludlow A. D. Atomic clock performance enabling geodesy below the centimetre level. Nature. 2018, vol. 564, pp. 87–90. DOI: 10.1038/s41586-018-0738-2.

12. Lodewyck J., Zawada M., Lorini L., Gurov M., Lemonde pp. Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks. Ultrasonic, Ferroelectrics and Frequency Control, IEEE Transactions. 2012, vol. 59, no. 3, pp. 411–415.

13. Horowitz pp. and Hill W. The Art of Electronics. Moscow, Binom, 2020, 704 p.

14. Ma L.-Sh., Jungner P., Ye J., and Hall J. L., Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Optics letters. 1994, vol. 19, no. 21, pp. 1777–1779.

15. Drever R. W. P., Hall J. L., Kowalski F. V., et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B. 1983, vol. 31, pp. 97–105.

16. Hänsch T. W. and Couillaud B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Optics Communications. 1980, vol. 35, Issue 3, pp. 441–444.

17. Gurov M. G., Gurova E. G. Toward the issue of feedback systems of frequency standards. The 11th International Forum on Strategic Technology (IFOST 2016). 2016, vol. 1, pp. 82–85. DOI: 10.1109/IFOST.2016.7884342.

18. Patent RU no. 2786601, 29.06.2022. Gurov M. G. Multi-channel optical radiation frequency stabilization system. 2022. Bull. no. 36. [In Russ].

19. Haze Sh., Hata S., Fujinaga M., and Mukaiyama T. Note: Auto-relock system for a bow-tie cavity for second harmonic generation. Review of scientific instruments. 2013, vol. 84, p. 026111.

20. Patent RU no. 2752462, 28.07.2021. Gurov M. G. Zeeman slower. 2022. Bull. no. 36. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.