Bibliography: 1. Bondarescu R., Schärer A., Lundgren A., Hetényi G., Houlié N., Jetzer P., Bondarescu M. Ground-based optical atomic clocks as a tool to monitor vertical surface motion. Geophys. J. Int. 2015, vol. 202, pp. 1770–1774. DOI: 10.1093/gji/ggv246.
2. Thompson A., Moran J., Swenson G. Interferometry and Synthesis in Radio Astronomy. Springer, Cham. 2017, p. 872. DOI: 10.1007/978−3-319−44431−4.
3. Fujieda M., Piester D., Gotoh T., Becker J., Aida M., Bauch A. Carrier-phase twoway satellite frequency transfer over a very long baseline. Metrologia. 2014, vol. 51, pp. 253–262. DOI:10.1088/0026−1394/51/3/253.
4. Alenichev V. M. Formation of geoinformation for diagnosing the state of a mining enterprise. MIAB. Mining Inf. Anal. Bull. 2021, no. 5−1, pp. 217–225. [In Russ]. DOI: 10.2 5018/0236_1493_2021_51_0_217.
5. Vorotyntseva I. A., Smirnov P. A., Danilchenko A. L., Yakubov M. M. Interpretation of geological data at the stage of geological exploration of a gold deposit. MIAB. Mining Inf. Anal. Bull. 2021, no. 11, pp. 45–55. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_45.
6. Antonov V. A., Alenichev V. M. About GEODATA monitoring and modeling of a productive layer of a gold-bearing placer. Markshejderiya i nedropol’zovanie. 2018, no. 3, pp. 56–59. [In Russ].
7. Voronov G. A. Comparison and analysis of the results of the postprocessing of satellite observation data using GLONASS and GPS navigation systems. MIAB. Mining Inf. Anal. Bull. 2018, no. 9−1, pp. 111–117. [In Russ]. DOI: 10.25018/0236-1493-2018-9-0−111−117.
8. Nagovicyn O. V. Lukichev S. V. Modern state and prospects of development of mining and geological systems. MIAB. Mining Inf. Anal. Bull. 2017. no. 23, pp. 53–67. [In Russ].
9. Tanaka Y. and Katori H. Exploring potential applications of optical lattice clocks in a plate subduction zone. Journal of Geodesy. 2021, vol. 95. pp. 93.
10. Takamoto M., Ushijima I., Ohmae N., Yahagi T., Kokado K., Shinkai H., and Katori H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 2020, vol. 14, pp. 411–415. DOI:10.1038/s41566-020-0619-8.
11. McGrew W. F., Zhang X., Fasano R. J., Schäffer S. A., Beloy K., Nicolodi D., Brown R. C., Hinkley N., Milani G., Schioppo M., Yoon T. H., Ludlow A. D. Atomic clock performance enabling geodesy below the centimetre level. Nature. 2018, vol. 564, pp. 87–90. DOI: 10.1038/s41586-018-0738-2.
12. Lodewyck J., Zawada M., Lorini L., Gurov M., Lemonde pp. Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks. Ultrasonic, Ferroelectrics and Frequency Control, IEEE Transactions. 2012, vol. 59, no. 3, pp. 411–415.
13. Horowitz pp. and Hill W. The Art of Electronics. Moscow, Binom, 2020, 704 p.
14. Ma L.-Sh., Jungner P., Ye J., and Hall J. L., Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Optics letters. 1994, vol. 19, no. 21, pp. 1777–1779.
15. Drever R. W. P., Hall J. L., Kowalski F. V., et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B. 1983, vol. 31, pp. 97–105.
16. Hänsch T. W. and Couillaud B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Optics Communications. 1980, vol. 35, Issue 3, pp. 441–444.
17. Gurov M. G., Gurova E. G. Toward the issue of feedback systems of frequency standards. The 11th International Forum on Strategic Technology (IFOST 2016). 2016, vol. 1, pp. 82–85. DOI: 10.1109/IFOST.2016.7884342.
18. Patent RU no. 2786601, 29.06.2022. Gurov M. G. Multi-channel optical radiation frequency stabilization system. 2022. Bull. no. 36. [In Russ].
19. Haze Sh., Hata S., Fujinaga M., and Mukaiyama T. Note: Auto-relock system for a bow-tie cavity for second harmonic generation. Review of scientific instruments. 2013, vol. 84, p. 026111.
20. Patent RU no. 2752462, 28.07.2021. Gurov M. G. Zeeman slower. 2022. Bull. no. 36. [In Russ].