Method of predicting the stress-strain state of interchamber pillars lined with a compliant rope fastener

The method of compliant fixing of inter-compartment pillars in the rocks prone to the exhibiting of rheological properties is presented in this article. The method of forecasting the deformations of anchored pillars is developed using the example of the development system of the tenth western panel of the AB formation, Verkhnekamskoe deposit of potassiummagnesium salts. Numerical realization of the model is performed by the finite element method in the software package Simulia Abaqus with the use of visco-elastic-plastic geomechanical model of sylvinite. Parametric support for the rheological model was made on the basis of the results of measurements of horizontal displacements of contour benchmarks interchamber pillars. The forecast was carried out for a period of 150 years after the chambers were fully developed. It has been established that the value of horizontal displacement of lateral surface of unlined interchamber pillars is equal to 123 mm for the forecast period. A comparative analysis of wire rope fastening operation with different rope diameters and fastener reaction values in the undercut mode of operation has been carried out. The exponential character of dependence between the duration of underlay and rigid regime of the roof support and the criterion of its effective work was revealed. It is evident from the presented data that the increase of the fastener efficiency increases with the use of a larger diameter rope, but the choice of the maximum rope diameter is limited by the design features of the fastener. The equation of dependence of horizontal displacements of the side surface of the anchored pillar on time and fastener reaction is given in the work. The forecast of the stress-strain state of the anchored pillars showed a positive effect of the supple support to increase the bearing capacity of the pillar both during its operation and after its destruction.

Keywords: stability, interchamber pillar, compliant fastener, method of compliant fastening of pillars, rope fastener, salt rock, creep, water-protective strata.
For citation:

Belikov A. A., Belyakov N. A. Method of predicting the stress-strain state of interchamber pillars lined with a compliant rope fastener. MIAB. Mining Inf. Anal. Bull. 2023;(4):20–34. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_20.

Acknowledgements:
Issue number: 4
Year: 2023
Page number: 20-34
ISBN: 0236-1493
UDK: 622.831; 624.121.54
DOI: 10.25018/0236_1493_2023_4_0_20
Article receipt date: 23.12.2022
Date of review receipt: 20.02.2023
Date of the editorial board′s decision on the article′s publishing: 10.03.2023
About authors:

A.A. Belikov1, Graduate Student, e-mail: s205046@stud.spmi.ru, ORCID ID: 0000-0001-5051-0680,
N.A. Belyakov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Belyakov_NA@pers.spmi.ru, ORCID ID: 0000-0002-9754-501X,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.A. Belikov, e-mail: s205046@stud.spmi.ru.

Bibliography:

1. Kashnikov Yu. A., Ermashov A. O., Efimov A. A. Geological and geomechanical model of the section of the Verkhnekamskoye potash deposit. Journal of Mining Institute. 2019, vol. 237, pp. 259—267. [In Russ]. DOI: 10.31897/PMI.2019.3.259.

2. Das A. J., Paul P. S., Mandal P. K., Kumar R., Tewari S. Investigation of failure mechanism of inclined coal pillars: Numerical modelling and tensorial statistical analysis with field validations. Rock Mechanics and Rock Engineering. 2021, vol. 54, no. 6, pp. 3263—3289.

3. Baryakh A. A., Gubanova E. A. On measures to protect potash mines from flooding. Journal of Mining Institute. 2019, vol. 240, pp. 613—620. DOI: 10.31897/ PMI.2019.6.613.

4. Habibi R., Moomivand H., Ahmadi M., Asgari A. Stability analysis of complex behavior of salt cavern subjected to cyclic loading by laboratory measurement and numerical modeling using LOCAS (case study: Nasrabad gas storage salt cavern). Environmental Earth Sciences. 2021, vol. 80, no. 8, pp. 1—21. DOI: 10.1007/s12665-021-09620-8.

5. Baryakh A. A., Stazhevskii S. B., Timofeev E. A. Strain state of a rock mass above karst cavities. Journal of Mining Science. 2008, vol. 44, no. 6, pp. 531—538. DOI: 10.1007/s10913008-0059-1.

6. Kuranov A. D., Bagautdinov I. I., Kotikov D. A., Zuev B. Yu. An integrated approach to predicting the stability of a safety pillar in a layered system of developing reserves of the Yakovlevskoye field. Gornyi Zhurnal. 2020, no. 1, pp. 115—119. [In Russ]. DOI: 10.17580/gzh.2020. 01.23.

7. Ilyukhin D., Gusev. V. The use of the finite element method for ensuring efficient and safe extraction of minerals. Key Engineering Materials. 2017, vol. 743, pp. 411—416. DOI: 10.4028/ www.scientific.net/KEM.743.411.

8. Aleksandrova T. N., Kuznetsov V. V., Ivanov E. A. Investigation of the water hardness ions impact on the copper-nickel ores flotation probability. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 263—278. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_263.

9. Kiyani V., Esmaili A., Alijani F., Samani S., Vasić L. Investigation of drainage structures in the karst aquifer system through turbidity anomaly, hydrological, geochemical and stable isotope analysis (Kiyan springs, western Iran). Environ Earth Sciences. 2022, vol. 81, no. 22, article 517. DOI: 10.1007/s12665-022-10627-y.

10. Mustafin M. G., Kologrivko A. A., Vasiliev B. Yu. Analysis of the accuracy of building digital terrestrial models based on periodic airborne laser scanning of a mining object. Gornyi Zhurnal. 2023, no. 2, pp. 56—62. [In Russ]. DOI: 10.17580/gzh.2023.02.09.

11. Vasilyeva M. A., Volchikhina A. A., Morozov M. D. Re-backfill technology and equipment. MIAB. Mining Inf. Anal. Bull. 2021, no. 6, pp. 133—144. [In Russ]. DOI: 10.25018/023 6_1493_2021_6_0_133.

12. Baryakh A. A., Lobanov S. Y., Lomakin I. S. Analysis of time-to-time variation of load on interchamber pillars in mines of the Upper Kama Potash Salt Deposit. Journal of Mining Science. 2015, vol. 51, no. 4, pp. 696—706. DOI: 10.1134/S1062739115040064.

13. Pankov I. L., Morozov I. A. Salt Rock Deformation under bulk multiple-stage loading. Journal of Mining Institute. 2019, vol. 239, pp. 510—519. [In Russ]. DOI: 10.31897/PMI.2019.5.510.

14. Morozov K. V. Creation of rock mass monitoring deformations systems on rock burst hazardous mineral deposits. 14th Internetional Congress on Rock Mechanics and Rock Engineering. 2020, pp. 1318−1323.

15. Karasev M. A., Protosenya A. G., Katerov A. M., Petrushin V. V. Analysis of shaft lining stress state in anhydrite-rock salt transition zone. Rudarsko Geolosko Naftni Zbornik. 2022, no. 12, pp. 151−162. DOI: 10.17794/rgn.2022.1.13.

16. Protosenya A. G., Katerov A. M. Development of stress and strain state of combined support for a vertical shaft driven in salt massif. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 100—113. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_100.

17. Dementyeva A. V., Karasev M. A. Design of yielding support systems in salts. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-1, pp. 136 — 144. [In Russ]. DOI: 10.25018/0236_1493_2 022_101_0_136.

18. Shabarov A. N., Kuranov A. D., Kiselev V. A. Assessing the zones of tectonic fault influence on dynamic rock pressure manifestation at Khibiny deposits of apatite-nepheline ores. Eurasian Mining. 2021. vol. 3, no. 2, pp. 3—7. DOI: 10.17580/em.2021.02.01.

19. Gendler S. G., Fazylov I. R., Abashin A. N. The results of experimental studies of the thermal regime of oil mines in the thermal method of oil production. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 248—262. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_248.

20. Zhang Y., Xiong X., Musa M., Lyu X. Analysis of a compressive strength model for FRP-confined damaged concrete columns based on the Drucker-Prager yield criterion. Structural Concrete. 2022, vol. 24, pp. 721—735. DOI: 10.1002/suco.202100584.

21. Fabre G., Pellet F. Creep and time-dependent damage in argillaceous rocks. International Journal of Rock Mechanics and Mining Sciences. 2006, vol. 43, no. 6, pp. 950—960. DOI: 10.1016/j.ijrmms.2006.02.004.

22. Panteleev I. A., Plekhov O. A., Naimark O. B., Evseev A. V., Pankov I. L., Asanov V. A. Features of strain localization in sylvinite under tension. PNRPU Mechanics Bulletin. 2015, no. 2, pp. 127—138. [In Russ]. DOI: 10.15593/perm.mech/2015.2.08.

23. Ermashov A. O. Geomekhanicheskoe obosnovanie raschetov osedaniya zemnoy poverkhnosti pri dobyche kaliyno-magnievykh rud (na primere Verkhnekamskogo mestorozhdeniya kaliyno-magnievykh soley) [Geomechanical substantiation of calculations of subsidence of the earth’s surface during the extraction of potassium-magnesium ores (on the example of the Verkhnekamskoye deposit of potassium-magnesium salts)], Candidate’s thesis, Perm, 2015.

24. Frenelus W., Peng H., Zhang J. Creep behavior of rocks and its application to the longterm stability of deep rock tunnels. Applied Sciences. 2022, vol. 12, no. 17, article 8451. DOI: 10.3390/app12178451.

25. Baryakh A. A., Samodelkina N. A., Konosavsky P. K. Prevention of freshwater breakthrough into potassium mines. Procedia Structural Integrity. 2021, vol. 32 no. 6, pp. 17—25. DOI: 10.1016/j.prostr.2021.09.004.

26. Zhang L., Wang X. Study on nonlinear damage creep model for rocks under cyclic loading and unloading. Advances in Materials Science and Engineering. 2021, vol. 2021, article 5512972, pp. 1—10. DOI: 10.1155/2021/5512972.

27. Fei W., Jie L., Quanle Z., Cunbao L., Jie C., Renbo G. A triaxial creep model for salt rocks based on variable-order fractional derivative. Mechanics of Time-Dependent Materials. 2021, vol. 25, no. 1, pp. 101—118. DOI: 10.1007/s11043-020-09470-0.

28. Asanov V. A., Pankov I. L., Kuzminyh V. S., Morozov I. A. The methodical aspects of strength, deformation and energy characteristic determination of salt rocks under direct tensile loading of rock specimens in laboratory conditions. PNRPU Mechanics Bulletin. 2018, no. 4, pp. 58—68. [In Russ]. DOI: 10.15593/perm.mech/2018.4.05

29. Protosenya A. G., Katerov A. M. Substantiation of rheological model parameters for salt rock mass. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 16—28. [In Russ]. DOI: 10.25018/ 0236_1493_2023_3_0_16.

30. Deng H., Zhou H., Li L. Fractional creep model of temperature-stress-time coupled damage for deep coal based on temperature-equivalent stress. Results in Physics. 2022, vol. 39, article 105765, pp. 1—12. DOI: 10.1016/j.rinp.2022.105765.

31. Taheri S. R., Pak A. Casing failure in salt rock: Numerical investigation of its causes. Rock Mechanics and Rock Engineering. 2020, no. 59, pp. 3903—3918. DOI: 10.1007/s00603020-02161-9.

32. Kashnikov Yu. A., Ashikhmin S. G., Kukhtinskii A. E., Shustov D. V. On the relationship of crack resistance coefficients and geophysical characteristics of rocks of hydrocarbon deposits. Journal of Mining Institute. 2020, vol. 241, pp. 83—90. [In Russ]. DOI: 10.31897/ PMI.2020.1.83.

33. Moghadam S. I., Taheri E., Ahmadi M., Ghoreishian Amiri S. A. Unified bounding surface model for monotonic and cyclic behaviour of clay and sand. Acta Geotechnica. 2022, vol. 17, no. 10, pp. 4359—4375. DOI: 10.1007/s11440-022-01521-9.

34. Shammazov I., Dzhemilev E., Sidorkin D. Improving the method of replacing the defective sections of main oil and gas pipelines using laser scanning data. Applied Sciences. 2023, vol. 13, no. 1, article 48. DOI: 10.3390/app13010048.

35. Abdelwahab A., Chishegorov D., Ivanov S., Mikhailov A. Influence of the main operational factors on the working capacity of a mining hydraulic excavator. E3S Web of Conferences. 2021, vol. 326, article 00007. DOI: 10.1051/e3sconf/202132600007.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.