Methodology for determining the technical and economic indicator – the intensity process of scooping blasted rocks from the hillside waste

In the paper, based on the proposed physical model of the working equipment of quarry excavators and experimental work carried out in production conditions, a method is proposed for determining the technical and economic indicator — the intensity of the process of scooping blasted rocks from the hillside waste, the collapsed part of the face after drilling and blasting. The factors influencing the intensity of the scooping process are determined: the design parameters of the excavator (the geometric capacity of the bucket and the component of the weight of the working equipment), the parameters of the electromechanical system of the lifting mechanism of the working equipment (the average values of the forces and speeds developed by the lifting drive, the shape coefficient of the mechanical characteristics of the lifting drive and the acceleration time of the lifting drive to idle speed), the control action, determined by the ratio of excess forces developed by the lifting and pressure drives of the working equipment mechanisms, physical and mechanical properties of the rock mass in the face (volume weight, loosening coefficient and relative diameter of the weighted average piece of rock), the efficiency of using the geometric capacity of the excavator bucket (the ratio of the bucket filling coefficient to the rock loosening coefficient in the bucket). The conducted studies substantiate the proposed assessment of the quality of the process of scooping blasted rocks from the scree and the factors affecting the intensity of the filling of the scooping process.

Keywords: working equipment of a quarry excavator, parameters of a quarry excavator, the process of scooping rocks, excavator performance, hillside waste, physical and mechanical properties of mined rock, filling the excavator bucket.
For citation:

Antropov L. A., Devyatkin Yu. A., Petrovykh L. V. Methodology for determining the technical and economic indicator — the intensity process of scooping blasted rocks from the hillside waste. MIAB. Mining Inf. Anal. Bull. 2022;(11-2):39-51. [In Russ]. DOI: 10.25018/0236_1493_2022_112_0_39.

Acknowledgements:
Issue number: 11
Year: 2022
Page number: 39-51
ISBN: 0236-1493
UDK: 622.271.4.681.518.2
DOI: 10.25018/0236_1493_2022_112_0_39
Article receipt date: 16.06.2022
Date of review receipt: 01.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

L.A. Antropov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: antropov.l@yandex.ru, ORCID ID: 0000-0002-4436-4573,
Yu.A. Devyatkin, Assistant Professor, Engineer, AO «Uralmashzavod», 620012, Ekaterinburg, Russia,
L.V. Petrovykh1, Cand. Sci. (Eng.), Assistant Professor, e-mail: lyubov.petrovyh@m.ursmu.ru, ORCID ID: 0000-0002-4074-2063,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

L.A. Antropov, e-mail: antropov.l@yandex.ru.

Bibliography:

1. Anistratov K.Yu. Analysis of the factors determining the efficiency of career excavators with latest press PAO Uralmashzavod. MIAB. Mining Inf. Anal. Bull. 2017, no. S38, pp. 70—83. [In Russ]. DOI: 10.25018/0236-1493-2017-12-38-70-83.

2. Dombrovskiy N. G., Zhukov P. A., Averin N. D. Ekskavatory [Excavators], Sverdlovsk, Mashgiz, 1946, 664 p.

3. Komissarov A. P., Lagunova Yu. A., Nabiullin R. Sh., Khoroshavin S. A. Digital model of shovel work process. MIAB. Mining Inf. Anal. Bull. 2022, no. 4, pp. 156—168. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_156.

4. Komissarov A. P., Lagunova Yu. A., Shestakov V. S., Ivanov I. Yu. Energy consumption of single-bucket excavators. Gornyi Zhurnal, 2018, no. 1, pp. 73—77. [In Russ].

5. Shestakov V. S., Horoshavin S. A. Establishment of models for calculation of working equipment mining excavators of the production OJSC «Uralmashzavod». Mining Equipment and Electromechanics. 2013, no. 8, pp. 14—19. [In Russ].

6. Poderni R.Yu., Klementyeva I. N., Lyapin D. G. Specific features of interaction of a working organ of a compact bucket wheel excavatorwith rock in a zone of their frictional contact. Ugol’. 2016, no. 12 (1089), pp. 20—23. [In Russ]. DOI: 10.18796/0041-5790-2016-12-20-22.

7. Rubtsov V. K. Issledovanie drobimosti gornykh porod vzryvami na kar'erakh [Investigation of rock fragmentation by explosions in quarries], Doctor’s thesis, Moscow, MGI, 1971, 34 p.

8. Konstantinov L. S. Investigation of the effect of lumpiness of the exploded rock mass on the efficiency of excavators and vehicles. Explosion technology. 1969, no. 67/24, pp. 178—186. [In Russ].

9. Belyakov Yu. I., Vladimirov V. M. Sovershenstvovanie ekskavatornykh rabot na kar'erakh [Improvement of the escalator work in quarries], Moscow, Nedra, 1974, 303 p.

10. Anistratov Yu. I., Zhabin N. I. Rational degree of crushing of rock mass in quarries with road transport. Gornyi Zhurnal. 1969, no. 1, pp. 36—38. [In Russ].

11. Tashkinov A. S., Sysoev A. A., Takshinov I. A. Comparative evaluation of the productivity of quarry excavators in the development of blasted rocks. Bulletin of the Kuzbass State Technical University. 2009, no. 4, pp. 17—20. [In Russ].

12. Isaichenkov A. B., Opanasenko P. I., Kononekov A. B. Investigated the effect of lumpiness of blasted rocks on the performance of Bucyrus 495 HD excavator. Mine Surveying and Subsurface Use. 2014, no. 6, pp. 17—19. [In Russ].

13. Isaychenkov A. B., Fedotenko V. S., Kononenko E. A. Patent RU 2570797, 10.12.2015. [In Russ].

14. Ostapenko P. I., Isaichekov A. B. Optimization of lumpiness of blasted semi-horizontal overburden rocks at the Tugnuysky section. Gornyi Zhurnal. 2015, no. 9, pp. 25—35. [In Russ].

15. Ugolnikov V. K., Gavrishev S. E., Ugolnikov N. V. The influence of the granulometric composition of rock mass on the productivity of excavators. MIAB. Mining Inf. Anal. Bull. 2007, special edition 7, pp. 70—77. [In Russ].

16. Aksenov V. V., Dubinkin D. M., Khoreshok A. A., Markov S. O., Efremenkov A. B., Tyulenev M. A. Evaluating the impact of excavator bucket capacity on the output of a haul truck in different variants of their positioning. Journal of Physics Conference Series. 2021, vol. 2052, no. 1, article 012001. DOI: 10.1088/1742-6596/2052/1/012001.

17. Komissarov A. P., Lagunova Yu. A., Lukashuk O. A., Plotnikov N. S., Saitov V. I.Interaction of the main mechanisms of a quarry excavator during excavation of rocks. News of the Ural State Mining University. 2018, no. 4(52), pp. 93—97. [In Russ]. DOI: 10.21440/2307-20912018-4-93-97.

18. Bender F. A., Sawodny O. A. Predictive Driver Model for the Virtual Excavator. The 13th International Conference on Control, Automation, Robotics and Vision (ICARCV 2014). 2014, pp. 187—192. DOI: 10.1109/ICARCV.2014.7064302.

19. Lee B., Kim H. J. Trajectory generation for an automated excavator. Proceedings of the 14 International Conference on Control, Automation and Systems (ICCAS 2014). Seoul, 2014, pp. 716—719. DOI: 10.1109/ICCAS.2014.6987872.

20. Yu X., Pang X., Zou Z., Zhang G., Hu Y., Dong J., Song H. Lightweight and highstrength design of an excavator bucket under uncertain loading. Mathematical Problems in Engineering. 2019, vol. 2019, no. 1. DOI: 10.1155/2019/3190819.

21. Oskouei M. A., Awuah-Offei K. Statistical methods for evaluating the effect of operators on energy efficiency of mining machines. Mining Technology. Transactions of the Institutions of Mining and Metallurgy: Section A. 2014, vol. 123, no. 4, pp. 175–182. DOI: 10.1179/ 1743286314Y.0000000067.

22. Dmitriev V. T., Timukhin S. A., Simisinov D. I., Karyakin A. L. Analysis of energy indicators of mine lifting installations. Gornyi Zhurnal. 2017, no. 8, pp. 70—72. [In Russ]. DOI: 10.17580/gzh.2017.08.13.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.