Geodynamic hazard assessment of a structural block holding an underground radioactive waste disposal facility

The stability assessment procedure of the geological medium is discussed as a casestudy of geoecological safety of high-level radioactive waste (HLRW) disposal in the Lower Kan Granite–Gneiss Massif, Krasnoyarsk Krai. For the formalized stability assessment, the notion of the dynamic index activity measure is introduced based on the expert estimates of the behavior of geological and geophysical parameters in the neighborhood of the uniform regional mesh points. Based on the values of the geodynamic safety measure, the structural tectonic blocks are ranked into relatively unstable (conditionally hazardous) and stable (conditionally safe). For the procedure to be implemented, the developed algorithms for the spatial layers of geological and geophysical information are reflective of the modern tectonic evolution of the earth crust. The algorithms are tested in terms of the Yenisei site of the Lower Kan Massif where construction of Russia’s first deep HLRW disposal facility is in progress. The geodynamic safety measure calculation using a digital average-resolution terrain model SRTM-4 and the maps of active tectonic faults is illustrated. The structural tectonic block intended for the construction occurs in the relatively stable zone. The testing proved the value of the proposed procedure, and the procedure deserves development and improvement.

Keywords: stability, geodynamic safety, geoecology, geological medium, structural tectonic block, high-level radioactive waste.
For citation:

Gvishiani A. D., Agayan S. M., Losev I. V., Tatarinov V. N. Geodynamic hazard assessment of a structural block holding an underground radioactive waste disposal facility. MIAB. Mining Inf. Anal. Bull. 2021;(12):5-18. [In Russ]. DOI: 10.25018/0236_1493_2021_12_0_5.


The study was supported by the Russian Science Foundation, Grant No. 18-17-00241: Rock Mass Stability Assessment Based on the Systemic Analysis of Geodynamic Processes for the Geoecologically Safe Underground Disposal of Radioactive Waste.

Issue number: 12
Year: 2021
Page number: 5-18
ISBN: 0236-1493
UDK: 621.039.7:504.5
DOI: 10.25018/0236_1493_2021_12_0_5
Article receipt date: 03.09.2021
Date of review receipt: 07.10.2021
Date of the editorial board′s decision on the article′s publishing: 10.11.2021
About authors:

A.D. Gvishiani1,2, Dr. Sci. (Phys. Mathem.), Аcademician of Russian Academy of Sciences, Chief Scientist of Geophysical Center RAS, Head of Department of Mathematical Geophysics and Geoinformatics, Schmidt Institute of Physics of the Earth RAS, e-mail:,
S.M. Agayan1, Dr. Sci. (Phys. Mathem.), Chief Researcher, e-mail:,
I.V. Losev1, Junior Researcher, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail:,
V.N. Tatarinov1,2, Dr. Sci. (Eng.), Head of Laboratory, e-mail:,
1 Geophysical Center, Russian Academy of Sciences, 119296, Moscow, Russia,
2 Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia.


For contacts:

V.N. Tatarinov, e-mail:


1. Anderson E. B., Belov S. V., Kamnev E. N., Kolesnikov I. Yu., Lobanov N. F., Morozov V. N., Tatarinov V. N. Podzemnaya izolyatsiya radioaktivnykh otkhodov [Underground isolation of radioactive waste], Moscow, Izd-vo «Gornaya kniga», 2011, 592 p.

2. Lobatskaya R. M. Neotectonic fault-block structure of junction of Siberian Platform and West Siberian Plate. Geology and Geophysics. 2005, vol. 46, no. 2, pp. 141—150. [In Russ].

3. Lukina N. V., Trifonov V. G., Makarov V. I. Correlation of tectonic events of the latest stage as a method for studying neotectonic processes. Sovremennaya geodinamika i glubinnoe stroenie territorii SSSR [Modern geodynamics and the deep structure of the territory of the USSR], Moscow, Nauka, 1985.

4. Ufimtsev G. F. Tektonicheskiy analiz rel'efa (na primere Vostoka SSSR) [Tectonic relief analysis (on the example of the East of the USSR)], Novosibirsk, Nauka, 1984, 183 p.

5. Nikolaev N. I. Noveyshaya tektonika i geodinamika litosfery [The latest tectonics and geodynamics of the lithosphere], Moscow, Nedra, 1988, 491 p.

6. Nesmeyanov S. A. Inzhenernaya geotektonika [Engineering geotectonics], Moscow, Nauka, 2004, 780 p.

7. Trofimov V. T., Gerasimova A. S., Krasilova N. S. Stability of the geological environment and factors determining it. Geoecology. 1994, no. 2, pp. 18—28. [In Russ].

8. Morozov V. N., Tatarinov V. N. Prediction of the stability of the geological environment when choosing the location and operation of nuclear fuel cycle facilities. Engineering Ecology. 2008, no. 5, pp. 10—16. [In Russ].

9. Bondarik G. K. A systematic approach to engineering and geological forecasts. 27 Mezhdunarodnyy geologicheskiy kongress Inzhenernaya geologiya. Sektsiya S. 17. Doklady. T. 17 [27th International Geological Congress Engineering Geology. Section C. 17. Reports. Vol. 17], Moscow, Nauka, 1984.

10. Morozov V. N., Kolesnikov I. Yu., Tatarinov V. N. Modeling of hazard levels of a stressstrain state in structural blocks of the Nizhnekansky granitoid massif (to the selection of radioactive waste burial sites. Geology. 2011, no. 6, pp. 524—542. [In Russ].

11. Batugina I. M., Petukhov I. M. Geodinamicheskoe rayonirovanie mestorozhdeniy pri proektirovanii i ekspluatatsii rudnikov [Geodynamic zoning of deposits in the design and operation of mines], Moscow, Nedra, 1988, 166 p.

12. Haruyama S., Ohokura H., Simking T., Ramphin R. Geomorphological zoning for flood inundation using satellite data. GeoJournal. 1996, vol. 38, pp. 273—278, DOI: 10.1007/ BF00204719.

13. Tatarinov V. N., Morozov V. V., Kolesnikov I.Yu., Kagan A. I., Tatarinova T. A. Stability of the geological environment as the basis for safe underground isolation of radioactive waste and spent nuclear fuel. Safety and Reliability of Power Industry. 2014, no. 1(24), pp. 25—29. [In Russ].

14. Gvishiani A. D., Kaftan V. I., Krasnoperov R. I., Tatarinov V. N., Vavilin E. V. Geoinformatics and systems analysis in geophysics and geodynamics. Fizika Zemli. 2019, no. 1, pp. 42—60. [In Russ]. DOI: 10.31857/S0002-33372019142-60.

15. Agayan S. M., Bogoutdinov Sh.R., Dobrovolsky M. N. Discrete perfect sets and their application in cluster analysis. Cybernetics and Systems Analysis. 2014, vol. 50, no. 2, pp. 17—32. [In Russ].

16. Schenk V., Schenková Z., Jechumtálová Z. Geodynamic hazard and risk assessments for sites close or in tectonic zones with shear movements. Environmental Earth Sciences. 2007, vol. 51, no. 7, pp. 1113—1117. DOI: 10.1007/s00254-006-0402-2.

17. Tianwei Lan, Hongwei Zhang, Sheng Li, Batugina I., Batugin A. Application and development of the method of geodynamic zoning according to geodynamic hazard forecasting at coal mines in China. IOP Conference Series Earth and Environmental Science. 2019, vol. 221, no. 1, article 012088.

18. Lazos I., Chatzipetros A., Pavlides S., Pikridas Ch., Bitharis S. Tectonic crustal deformation of Corinth Gulf, Greece, based on primary geodetic data. Acta Geodynamica et Geomaterialia. 2020, vol. 17, no. 4, pp. 413–424. DOI: 10.13168/AGG.2020.0030.

19. Aliev R. A. Fundamentals of the fuzzy based generalized theory decisions studies in fuzziness and soft computing. studies in fuzziness and soft computing. Springer, 2013, 332 p. DOI: 10.1007/978-3-642-34895-2.

20. Pedrycz W., Ekel P., Parreiras R. Fuzzy Multicriteria decision-making: models, methods and applications. John Wiley & Sons, Ltd., 2011, 360 p. DOI:10.1002/9780470974032.

21. Lofti A. Zadeh, Aliev R. A. Fuzzy logic theory and application: part I and part II. World Scientific Publishing Company, 2019, 610 p.

22. Gvishiani A. D., Agayan S. M., Bogoutdinov Sh.R. Investigation of systems of real functions on two-dimensional grids using fuzzy sets. Chebyshevskii sbornik. 2019, vol. 20. Вып. 1, pp. 94—111. DOI: 10.22405/2226-8383-2019-20-1-94-111.

23. Fishbern P. Teoriya poleznosti dlya prinyatiya resheniy [Utility theory for decision-making], Moscow, Nauka, 1978, 352 p.

24. Kocharyan G. G. The dynamics of fault zone deformation characteristics. Geophysical research. 2009, vol. 10, no. 2, pp. 47—55. [In Russ].

25. Gerya T. Introduction to numerical geodynamic modelling. Cambridge University Press, Zurich, 2019, 471 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.