Prospects for the physicochemical geotechnology in Russia

The article defines the physicochemical geotechnology and identifies the research challenges. The actual problems of mining engineering are conditioned by stagnation in managerial decision-making, timing of introduction of new and promising trends in mineral mining and by the wheel track phenomenon which governs operation by the known patterns. The promising areas of research toward enhanced technical efficiency and the key engineering objects are determined in order to simplify introduction of the physicochemical geotechnology in mineral mining. The actual experience shows that advance in the physicochemical geotechnology is possible through effective access to mineral resources using boreholes and via cost optimization in the methods currently in use. It is confirmed that the operating equipment design and duty require optimization, which can improve productiveness of the equipment. The keystone is introduction of real-time digital control for mineral mining as well as exact prediction of variation in the technology and geology factors which can affect productive stratum development. Furthermore, there are problems connected with the environmental impact of mining and with legal regulation of mineral production.

Keywords: uphysicochemical geotechnology, development prospects, hydraulic borehole mining, in-situ metal leaching, in-mine gasification, geothermal boreholes, underground storage cavities, underground dissolving, mineral mining.
For citation:

Surin S. D., Mosina A. S. Prospects for the physicochemical geotechnology in Russia. MIAB.MiningInf.Anal.Bull.2021;(3-1):252—267.[InRuss].DOI:10.25018/0236_1493_2021_31_0_252.

 

Acknowledgements:
Issue number: 3
Year: 2021
Page number: 252-267
ISBN: 0236-1493
UDK: 621.642.37
DOI: 10.25018/0236_1493_2021_31_0_252
Article receipt date: 16.11.2020
Date of review receipt: 01.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.02.2021
About authors:

Surin S. D., Cand. Sci. (Eng.), leading research worker, Gazprom Geotechnology LLC, Moscow, Russia;
Mosina A. S., postgraduate student of the Department of Engineering and Ecological Geology, Faculty of Geology, Lomonosov Moscow State University, Moscow, Russia.

 

For contacts:
Bibliography:

1. Kuz’min G. P., Yakovlev A. V. Podzemnye rezervuary v merzlyh gruntah [Underground storages in permafrost grounds]. Yakutsk: Institut merzlotovedeniya SO RAN, 1992 152 p. [In Russ]

2. Vakulenko I. S., Smirnov V. I., Surin S. D. Construction experience and use prospects of underground storages in permafrost for the disposal of drilling waste. MIAB. Mining Inf. Anal. Bull. 2016. no. 1. pp. 222—229. [In Russ]

3. Savich O. I., Karpuhin A. N., Surin S. D. Podzemnoe hranenie zhidkih uglevodorodov na poluostrove Yamal. MIAB. Mining Inf. Anal. Bull. 2013. no.11. pp. 207—209. [In Russ]

4. Eui-SeobPark, Yong-BokJung, Won-KyongSong, Dae-HyukLee, So-KeulChung. Pilot study on the underground lined rock cavern for LNG storage. Engineering Geology, Volume 116, Issues 1–2, 27 October 2010, Pages 44—52.

5. Hrulev A. S., Savich O. I.,. Karpuhin A. N, Shergin D. V., Gridin O. M. Features of permafrost thawing during creating borehole underground storages. MIAB. Mining Inf. Anal. Bull. 2011. no.6. pp. 268—271. [In Russ]

6. Kuz’min G. P. Podzemnye sooruzheniya v kriolitozone [Underground structures in the cryolithozone]. Novosibirsk: Nauka, 2002. 176 p. [In Russ]

7. Shergin D. V. Issledovanie i razrabotka tekhnologii sozdaniya podzemnyh rezervuarov v mnogoletnemerzlyh porodah [Research and development of technology underground storages creating in permafrost regions]. Diss. kand. tekhn. nauk. Moscow: FGBUN Institut mashinovedeniya im. A. A. Blagonravova (IMASh RAN), 2014. 167 p. [In Russ]

8. Jingyu Shi, Baotang Shen. Temperature change around a LNG storage predicted by a three-dimensional indirect BEM with a hybrid integration scheme. Geosystem Engineering. Volume 21, 2018 Issue 6. Pages 309—317.

9. Eppelbaum L. V., Kutasov I. M. (2019). Well drilling in permafrost regions: dynamics of the thawed zone. Polar Research, 38.

10. Xuerui Wang, Zhiyuan Wang, Xuejing Deng, Baojiang Sun, Yang Zhao, Weiqi Fu. Coupled thermal model of wellbore and permafrost in Arctic regions. Applied Thermal Engineering, Volume 123, August 2017, pp. 1291—1299.

11. Aksyutin O. E., Kazaryan V. A., Ishkov A. G., Hlopcov V. G., Teplov M. K., Hrulev A. S., Savich O. I., Surin S. D. Stroitel’stvo i ekspluataciya rezervuarov v mnogoletnemerzlyh osadochnyh porodah [Construction and operation of reservoirs in permafrost sedimentary rocks]. Moscow-Izhevsk: NIC «Regulyarnaya i haoticheskaya dinamika», Institut komp’yuternyh issledovanij. 2013. 432 s. [In Russ]

12. Shergin D. V. Metodika raschyota parametrov teplovogo razrusheniya mnogoletnemyorzlyh osadochnyh porod pri sozdanii skvazhinnyh podzemnyh rezervuarov. Fiziko-himicheskaya geotekhnologiya [Method for calculating the parameters of thermal destruction of permafrost sedimentary rocks during creating borehole underground storages]. Materialy konferencii. Moscow, 2013. pp. 81—87. [In Russ]

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.