Methodological and technological support for a simulation model of mineral disintegration

The study presents a research stage aimed at developing a simulation model of mineral disintegration. The work was performed on samples of ferruginous quartzite processed at Stoilensky GOK. The work is based on the algorithm of simulation modeling of minerals disintegration in reduction of mineral particle size, which allows considering dependence of disintegration result on the energy spent by estimating influence of such parameters as equipment capacity, Bond work index, and productivity. At the current stage the authors have analysed an approach to provide the simulation model of mineral disintegration with basic information, including discrete distribution of outputs of narrow mineral fractions in the feeding of mineral particle size reduction, specified in coordinates of size grades and classes of useful mineral content. The approach has required the development of prototypes of equipment for fractionation of mineral particles of individual size grades, which excluded the use of heavy liquids in the experiments and reduced the test time. To process the results of fractionation experiments, the authors have proposed a method of identifying continuous functions of the distribution of yields of content classes with estimation of the determination coefficient at the points of the corresponding discrete distributions. This has allowed establishing uniform boundaries of content classes for the whole range of particle sizes and presenting the material composition of feeding of particle size reduction as a rectangular matrix of yields of narrow mineral fractions.

Keywords: mineral particle size reduction, mineral disintegration, simulation modeling, mineral fractionation, narrow mineral fraction, mineral particle size grade, useful mineral content class, useful mineral distribution, material composition of ore mass
For citation:

Nikitin R. M., Opalev A. S., Birukov V. V., Kitaeva A. S., Kompanchenko A. A. Methodological and technological support for a simulation model of mineral disintegration. MIAB. Mining Inf. Anal. Bull. 2022;(12-1):63-77. [In Russ]. DOI: 10.25018/0236_1493_2022_121_0_63.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 63-77
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2022_121_0_63
Article receipt date: 25.03.2022
Date of review receipt: 24.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

R.M. Nikitin1, Cand. Sci. (Eng.), Senior Researcher, e-mail: remnik@yandex.ru, ORCID ID: 0000-0002-9692-0383,
A.S. Opalev1, Cand. Sci. (Eng.), Leading Researcher, e-mail: a.opalev@ksc.ru, ORCID ID: 0000-0001-5120-7595
V.V. Birukov, Assistant Professor, Apatity branch of Murmansk Arctic State University, 184209, Apatity, Russia, e-mail: birukovval@rambler.ru, ORCID ID: 0000-0002-0495-2928,
A.S. Kitaeva1, Junior Researcher, e-mail: 1990nuta2008@rambler.ru, ORCID ID: 0000-0002-8766-3119,
A.A. Kompanchenko, Cand. Sci. (Geol. Mineral.), Researcher, Geological Institute, Kola Scientific Centre of Russian Academy of Sciences, 184209, Apatity, Russia, e-mail: komp-alena@yandex.ru, ORCID ID: 0000-0003-1240-7898,
1 Mining Institute, Kola Scientific Centre of Russian Academy of Sciences, 184209, Apatity, Russia.

 

For contacts:

R.M. Nikitin, e-mail: remnik@yandex.ru.

Bibliography:

1. Gay S. L. A liberation model for comminution based on probability theory. Minerals Engineering. 2004, vol. 17, no. 4, pp. 525—534. DOI: 10.1016/j.mineng.2013.11.012.

2. Leißner T., Mütze T., Bachmann K., Rode S., Gutzmer J., Peuker U. A. Evaluation of mineral processing by assessment of liberation and upgrading. Minerals Engineering. 2013, vol. 53, pp. 171—173. DOI: 10.1016/j.mineng.2013.07.018.

3. Cisternas L. A., Lucay F. A.,Botero Y. L. Trends in modeling, design, and optimization of multiphase systems in minerals processing. Minerals. 2020, vol. 10, no. 1. DOI: 10.3390/min10010022.

4. Guntoro P. I., Ghorbani Y., Rosenkranz J. 3D ore characterization as a paradigm shift for process design and simulation in mineral processing. Berg Huettenmaenn Monatsh. 2021, vol. 166, no. 8, pp. 384—389. DOI: 10.1007/s00501-021-01135-w.

5. Petrakis E., Komnitsas K. Improved modeling of the grinding process through the combined use of matrix and population balance models. Minerals. 2017, vol. 7, no. 67. DOI: 10.3390/min7050067.

6. Rashidi S., Rajamami R. K., Fuerstenau D. W. A review of the modeling of high pressure grinding rolls. KONA Powder and Particle Journal. 2017, vol. 34, pp. 125—140. DOI: 10.14356/kona.2017017.

7. Conger W., McIvor R. E., Weldum T. P. Ball mill media optimization through functional performance modeling. Mining Engineering. 2018, vol. 70, no. 11, pp. 28—38.

8. Ksenofontov B., Titov K., Firsova A. Jordan-Gauss successive elimination method in solution of pneumohydraulic flotation water purification problems. IOP Conference Series: Materials Science and Engineering. 2019, vol. 492, no. 1, article 012009. DOI: 10.1088/1757899X/492/1/012009.

9. Ksenofontov B. S., Titov K. V. Flotation simulation model. AIP Conference Proceedings. 2019, vol. 2195, no. 1, article 020039. DOI: 10.1063/1.5140139.

10. Ksenofontov B. S. Flotation multistage and generalized models of the process harvesters of ksenofontov type and for special purpose. Academus Publishing, London, 2021. 299 p.

11. Nikolaeva N. V., Aleksandrova T. N., Elbendari A. M. Ore strength property evaluation in the design of ore preparation cycles. Geomechanics and Geodynamics of Rock Masses. 2018, vol. 1–2. Taylor & Francis Group, London, UK, pp. 333—338.

12. Nikolaeva N. V., Romashev A. O., Aleksandrova T. N. Degree evaluation of grinding on fractional composition at destruction of polymineral raw materials. 29th International Mineral Processing Congress, IMPC 2018. Canada, 2019, pp. 474—480.

13. Aleksandrova T., Nikolaeva N., Afanasova A., Romashev A., Kuznetsov V. Selective disintegration justification based on the mineralogical and technological features of the polymetallic ores. Minerals. 2021, vol. 11, no. 8. DOI: 10.3390/min11080851.

14. Vaisberg L. А., Demidov I. V., Ivanov K. S. Mechanics of granular media under vibration action: the methods of description and mathematical modeling. Obogashchenie Rud. 2015, no. 4, pp. 21—31. [In Russ]. DOI: 10.17580/or.2015.04.05.

15. Beloglazov I. I., Stepanyan A. S., Feoktistov A. Yu., Yusupov G. A. Disintegration process modeling for a jaw crusher with complex jaws swing. Obogashchenie Rud. 2018, no. 2, pp. 3—8. [In Russ]. DOI: 10.17580/or.2018.02.01.

16. Yushina T. I., Chantutia E. L., Dumov A. M., Myaskov A. V. Modern trends of technological advancement in iron ore processing. Gornyi Zhurnal. 2021, no. 11, pp. 75—83. [In Russ]. DOI: 10.17580/gzh.2021.11.10.

17. Erdenesul Jargalsaikhan, Morozov V.V. Optimizing copper–molybdenum ore milling coarseness using model-oriented criteria. MIAB. Mining Inf. Anal. Bull. 2018, no. 8, pp. 176—183. DOI: 10.25018/0236-1493-2018-8-0-176-183.

18. Melekhina K. A., Ananyev P. P., Plotnikova A. V., Timofeev A. S., Shestak S. A. Modeling and optimization of complex ore pretreatment by disintegration in autogenous mills. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 95—105. [In Russ]. DOI: 10.25018/0236_1493_2020_10_0_105.

19. Matveev I. A., Yakovlev B. V., Eremeeva N. G. Modeling particle flow in active zone of large-angle concentrator. MIAB. Mining Inf. Anal. Bull. 2021, no. 7, pp. 146—153. [In Russ]. DOI: 10.25018/0236_1493_2021_7_0_146.

20. Nikitin R. M., Lukichev S. V., Opalev A. S., Biryukov V. V. Simulation modeling of a section segment in the processing of ferruginous quartzites. Obogashchenie Rud. 2022, no. 4,

pp. 13—19. [In Russ]. DOI: 10.17580/or.2022.04.03.

21. Opalev A. S., Birukov V. V., Scherbakov A. V. Stadial obtaining of the magnetite concentrate during the development of power resource-saving technology of benefication of ferruginous quartzites on JSC «Olcon». MIAB. Mining Inf. Anal. Bull. 2015, no. 11, pp. 60—62. [In Russ].

22. Lukichev S. V., Nikitin R. M., Birukov V. V. A simulation model of minerals' grade size reduction. MIAB. Mining Inf. Anal. Bull. 2019, no. S37, pp. 514—522. [In Russ]. DOI: 10.25018/0236-1493-2019-11-37-514-522.

23. Nikitin R. M., Biryukov V. V., Kameneva Yu. S., Vishnyakova I. N. The use of a simulation model for reducing the size of mineral particles in the modeling of crushing and grinding processes. Obogashchenie Rud. 2020, no. 2, pp. 3—8. [In Russ]. DOI: 10.17580/or.2020.02.01.

24. King R. P. Modeling and simulation of mineral processing systems. Department of Metallurgical Engineering University of Utah, USA. 2001. 403 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.