Mechanochemical activation of processing tailings to manufacture components for cemented backfill

The topic of this research is the mechanochemical activation of ore processing tailings to be used in production of components for cemented backfill. The problem here is the limited usability of processing and conversion tailings at their content of metals higher than the allowable maximum. This fact defines the goal of the research: the theoretical and experimental validation of usability of tailings after removal of metal impurities down to the sanitary standards for the purposes of backfilling. The research methods include the generalization and systematization of the experience of metal leaching from processing tailings in disintegrators. The increased volume of metal production calls for new resources from mining practices, including increased application of mining technologies with cemented backfill. It is shown that one of the ways of solving the problem connected with shortage of raw materials is mechanochemical processing of low-grade minerals with improvement of qualities of available cheap agents by integration of the mechanical and chemical effects. Recovery of metals in leaching in a disintegrator reaches the value which allows using the tailings in the mining industry without the health-based constraints, including production of binding agents. The mechanochemical technology of tailings treatment allows expanding the range of backfilling with cemented backfill made of tailings. For this reason, the comprehensive utilization of mining and metallurgy waste after mechanochemical activation in disintegrators can be a realistic reserve for the improvements and achievements in underground mineral mining.

Keywords: mined-out space, cemented mixture, tailings, metal, mechanochemistry, energy, activation.
For citation:

Golik V. I., Alekseev I. A. Mechanochemical activation of processing tailings to manufacture components for cemented backfill. MIAB. Mining Inf. Anal. Bull. 2023;(5-1):5-16. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_5.

Acknowledgements:
Issue number: 5
Year: 2023
Page number: 5-16
ISBN: 0236-1493
UDK: 504.55.054:622(470.6)
DOI: 10.25018/0236_1493_2023_51_0_5
Article receipt date: 13.01.2023
Date of review receipt: 13.02.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

V.I. Golik, Dr. Sci. (Eng.), Professor, e-mail: v.i.golik@mail.ru, Moscow Polytechnic University, 107023, Moscow, Russia,
I.A. Alekseev, Cand. Sci. (Jurid.), Assistant Professor, Professor, Rector, North Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia.

 

For contacts:

V.I. Golik, e-mail: v.i.golik@mail.ru.

Bibliography:

1. Balovtsev S. V., Skopintseva O. V., Kulikova E. Yu. Hierarchical structure of aerological risks in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 276—285. [In Russ]. DOI: 10.21177/19984502-2022-14-2-276-285.

2. Bosikov I. I., Klyuev R. V., Mayer A. V., Stas G. V. Development of a method for analyzing and evaluating the optimal state of aerogasodynamic processes in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 97—106. [In Russ]. DOI: 10.21177/ 1998-4502-2022-14-1-97-106.

3. Bosikov I. I., Klyuev R. V., Aimbetova I. O., Makhosheva S. A. Assessment and analysis of aerodynamic parameters of air flows for effective selection of air supply schemes in coal mine. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 3, pp. 397—405. [In Russ]. DOI: 10.21177/1998-4502-2021-13-3-397-405.

4. Kulikova A. A., Kovaleva A. M. Use of tailings of enrichment for laying of the developed space of mines. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 144—154. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-144-154.

5. Khint I. A. O chetvertom komponente tekhnologii. Nauchno-informatsionnyy sbornik SKTB «Dezintegrator» [About the fourth component of the technology. Scientific and informational collection of SCTB «Disintegrator»], Tallin, Valgus, 1980, pp. 66—72.

6. Golik V. I. Conceptual approaches to the creation of low waste and wasteless mining production on the basis of combination of physical-technical and physical-chemical geotechnologies. Gornyi Zhurnal. 2013, no. 5, pp. 93—97. [In Russ].

7. Golik V. I., Dmitrak Yu. V., Razorenov Yu. I., Maslennikov S. A., Lyashenko V. I. Mechanochemical technology of iron extraction from enrichment tailings. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 4, pp. 282—291. [In Russ]. DOI: 10.17073/0368-0797-2021-4-282-291.

8. Golik V. I., Komashchenko V. I., Kachurin N. M. The concept of combining technologies for the development of ore deposits. News of the Tula state university. Sciences of Earth. 2015, no. 4, pp. 76—88. [In Russ].

9. Komashchenko V. I. Ecological and economic feasibility of utilization of mining waste for the purpose of their processing. News of the Tula state university. Sciences of Earth. 2015, no. 4, pp. 23—30. [In Russ].

10. Eremeeva Zh. V., Sharipzyanova G. X. The composition of diffusion layers and the effect of the activator type on the structure of powder materials obtained during diffusion chromosilidation. Tekhnologiya metallov. 2007, no. 7, pp. 35—37. [In Russ].

11. Klyuev R. V., Bosikov I. I., Mayer A. V., Gavrina O. A. Comprehensive analysis of the effective technologies application to increase sustainable development of the natural-technical system. Sustainable Development of Mountain Territories. 2020, vol. 12, no. 2, pp. 283—290. [In Russ]. DOI: 10.21177/1998-4502-2020-12-2-283-290.

12. Bunin I. Zh., Ryazantseva M. V., Samusev A. L., Khabarovsk I. A. Composite physicochemical and energy action on geomaterials and aqueous slurries: theory and practice. Gornyi Zhurnal. 2017, no. 11, pp. 134—139. [In Russ]. DOI: 10.17580/gzh.2017.11.14.

13. Valiev N. G., Golovyrin S. S., Makarov V. V. On the use of artificial intelligence systems in audit procedures of modern mining production (problems of solving problems of modern mining production using multi-agent systems). MIAB. Mining Inf. Anal. Bull. 2017, no. S23, pp. 134—139. [In Russ]. DOI: 10.25018/0236-1493-2017-10-23-134-139.

14. Malykhina M. P., Gerasimov D. A. Multi-agent systems artificial intelligence. Scientific Works of the Kuban State Technological University. 2018, no. 3, pp. 476—484. [In Russ].

15. Burmistrov K. V., Osintsev N. A. Principles of sustainable development of mining and technical systems in transitional periods. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2020, vol. 331, no. 4, pp. 179—195. [In Russ]. DOI: 10.18799/24131830/2020/4/2606.

16. Sepehri M., Apel D. B., Adeeb S., Leveille P., Hall R. A. Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite element model. Engineering Geology. 2020, vol. 266, рр. 105—117. DOI: 10.1016/j.enggeo. 2019.105457.

17. Brigida V. S., Kozhiev Kh. Kh., Saryan A. A., Dzhioeva A. K. Time-space problems in geoecology: An inter-disciplinary approach. MIAB. Mining Inf. Anal. Bull. 2020, no. 4, pp. 20—32. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0-20-32.

18. Zaalishvili V. B., Melkov D. A., Dzeranov B. V., Morozov F. S., Tuaev G. E. Integrated instrumental monitoring of hazardous geological processes under the Kazbek volcanic center. International Journal of Geomate. 2018, vol. 15, no. 47, pp. 158—163. DOI: 10.21660/2018.47.20218.

19. Rybak J., Gorbatyuk S., Bujanovna-Syuryun K., Khairutdinov A., Tyulyaeva Y., Makarov P. Utilization of mineral waste: a method for expanding the mineral resource base of a mining and smelting company. Metallurgist. 2021, vol. 64, pp. 851—861. DOI: 10.1007/s11015021-01065-5.

20. Dmitrak Yu. V., Tsidaev B. S., Dzaparov V. Kh., Kharebov G. H. Mineral resource base of non-ferrous metallurgy of Russia. Vector of Geosciences. 2019, vol. 2, no. 1, pp. 9—18. [In Russ]. DOI: 10.24411/2619-0761-2019-10002.

21. Petrov Yu. S., Khadzaragova E. A., Sokolov A. A., Sharipzyanova G. Kh., Taskin A. V. Acquisition, transmission and storage of information on production-induced cycle in mining and metallurgy: Outlines. MIAB. Mining Inf. Anal. Bull. 2020, no. 11-1, pp. 178—188. [In Russ]. DOI: 10.25018/0236-1493-2020-111-0-178-188.

22. Mikhailov V. G., Khoreshok A. A., Koshelev A. V. Waste management system of an indus-trial enterprise as an element of the ecological standard of the coal mining region. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 3, pp. 379—390. [In Russ]. DOI: 10.21177/1998-4502-2022-14-3-379-390.

23. Ghorbani Y., Franzidis J.-P., Petersen J. Heap leaching technology — Current state, innovations, and future directions. A review. Mineral Processing and Extractive Metallurgy Review. 2016, vol. 37, no. 2, pp. 73—119. DOI: 10.1080/08827508.2015.1115990.

24. Sinclair L., Thompson J. In situ leaching of copper: Challenges and future prospects. Hydrometallurgy. 2015, vol. 157, pp. 306—324. DOI: 10.1016/j.hydromet.2015.08.022.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.