Mathematical modeling of dynamic processes in electromagnetic vibration exciters for technological machines

The actuality of the research performed is due to the promising practical use of electromagnetic vibration exciters in vibration machines, which are widely used in the mining and construction industry to intensify technological processes associated with the processing of mineral raw materials. An approach to the creation of a mathematical model of a vibration technological machine is considered. Based on the data of the mathematical model, a computer simulation model is developed that provides wide opportunities for the analysis of periodic electromechanical processes with energy loss in transient and steady-state modes. Recommendations are given for creating a mathematical model in the form of a dynamic calculation algorithm performed using the structural modeling aids of Matlab Simulink. As an example of a dynamic calculation, the results of the simulation of the electromagnetic vibration exciter are presented in the form of diagrams showing the operating process of switching on, reaching the steady state and the load surge mode when powered from an industrial power source using a half-wave rectification circuit. The simulation results are qualitatively and quantitatively agree with the results obtained using a physical model. The disagreement value is no more than 6%. The research results can be useful for specialists in electromechanics engaged in the calculation and design of vibration technological machines with electromagnetic vibration exciters.

Keywords: Vibrating machines and technologies; electromagnetic vibration exciter; two-mass oscillatory system; Lagrange equations; mathematical model; simulation model; structural modeling methods; electromechanical processes.
For citation:

Neyman V. Yu., Neyman L. A., Lappi S. Yu. Mathematical modeling of dynamic processes in electromagnetic vibration exciters for technological machines. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):203—216. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_203.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 203-216
ISBN: 0236-1493
UDK: 621.313.282:621.928.235
DOI: 10.25018/0236_1493_2022_122_0_203
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Neiman V. Yu.1, Dr. Sci. (Eng.), Head of the Department, http://orcid.org/0000-0002-84331610, nv.nstu@ngs.ru;
Neiman L. A.1, Dr. Sci. (Eng.), Professor, http://orcid.org/0000-0002-3442-6531, neyman31@ gmail.com;
Lappi S. Yu.1, postgraduate student, http://orcid.org/0000-0002-4301-8513, kafelectro@mail.ru.
1 Novosibirsk State Technical University, 630073, Novosibirsk, Karl Marx Avenue,20, Russia.

 

For contacts:

Neiman V. Yu., e-mail: nv.nstu@ngs.ru

Bibliography:

1. Vajsberg L. A., Safronov A. N. Vibration crushing and grinding equipment for processing raw materials and industrial waste. Ekologiya i promyshlennost’ Rossii. 2019, vol. 23, no. 7, pp. 4—9. [In Russ]. DOI: 10.18412/1816-0395-2019-7-4−9.

2. Bochkov V. S., Dyagilev S. D. Analysis of one-stage and two-stage crushing of shale in jaw crusher ShchD 10M for manufacture of terrazzo tiles. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 78—84. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0−78−84.

3. D’yakonova V. Ya., Kalinovskaya T. G., D’yakonov M. N., Volchkova I. V. Modernization of the vibration exciter of the GISL screen when switching to a new operating mode. Izvestiya vysshih uchebnyh zavedenij. Gornyj zhurnal. 2020, no. 2, pp. 99—108. [In Russ]. DOI: 10.21440/0536-1028-2020-1-99−108.

4. Shikhov A. M., Rumyantsev S. A., Azarov E. B. Improving energy efficiency during the start-up and operation of vibrotransport machines with three vibration exciters. MIAB. Mining Inf. Anal. Bull. 2020, no. 4, pp. 137—145. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0−137−145.

5. Blekhman I. I., Blekhman L. I., Vajsberg L. A., Vasil’kov V. B. Energy consumption in vibrating transport and technological machines. Obogashchenie rud. 2019, no. 1, pp. 18—27. [In Russ]. DOI: 10.17580/or.2019.01.03.

6. Lyashenko V. I., Dyatchin V. Z., Franchuk V. P. Improvement of vibrating screen feeders for the mining and metallurgical industry. Izvestiya vysshih uchebnyh zavedenij. Chernaya metallurgiya. 2018, vol. 61, no. 6, pp. 470—477. [In Russ]. DOI: 10.17073/0368-0797-2018-6-470−477.

7. Blekhman I. I. Teoriya vibracionnyh processov i ustrojstv. Vibracionnaya mekhanika i vibracionnaya tekhnika. [Theory of vibration processes and devices. Vibration Mechanics and Vibration Technology], Sankt-Peterburg, ID «Ruda i metally»,2013,640 p. [In Russ].

8. Afanas’ev A. I., Andryushenkov D. N., Zakamennyh A. Yu. Resonant sifter with linear electromagnetic motor. Izvestiya vysshih uchebnyh zavedenij. Gornyj zhurnal. 2010, no. 2, pp. 57—60. [In Russ].

9. Neyman V. Yu. Integrated linear electromagnetic motors for impulse technologies. Russian Electrical Engineering. 2003, vol. 74, no. 9, pp. 30—35.

10. Pavlenko A. V., Batishchev D. V., Gummel’ A. A., Bol’shenko I. A. Design of electromagnetic drives resistant to external mechanical disturbances. Izvestiya vysshih uchebnyh zavedenij. Elektromekhanika. 2017, vol. 60, no. 3, pp. 17—27. [In Russ]. DOI: 10.17213/0136-3360-2017-3-17−27.

11. Ibadullaev M. I., Nuraliev A. K., Esenbekov A. Zh., Nazarov A. I. Resonant electromagnetic vibration exciter with feedback. Vestnik Moskovskogo energeticheskogo instituta. Vestnik MEI. 2020, no. 1, pp. 62—66. [In Russ]. DOI: 10.24160/1993-6982-2020-1-62−66.

12. Neyman L. A., Neyman V. Y. Complex analysis of electromagnetic machines for vibro-impact technologies. IOP Conference Series: Earth and Environmental Science. 2017, vol. 87, art. 032026. DOI: 10.1088/1755−1315/87/3/032026.

13. Afanas’ev A. I., Suslov D. N., Chirkova A. A. Analysis of the efficiency of vibration exciters of resonant vibration transport machines. Izvestiya vysshih uchebnyh zavedenij. Gornyj zhurnal. 2018, no. 2, pp. 68—75. [In Russ]. DOI: 10.21440/0536-1028-2018-2-68−75.

14. Gnezdilov A. A. On the implementation of resonance modes of technological vibration machines. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2019, no. 1 (171), pp. 159—163. [In Russ].

15. Makarov L. N., Denisov V. N., Kurilin S. P. Designing and modeling a linear electric motor for vibration-technology machines. Russian Electrical Engineering. 2017, vol. 88, no. 3, pp. 166—169. DOI: 10.3103/S1068371217030129.

16. Neiman L. A., Neiman V. Y., Shabanov A. S. A simplified calculation of the intermittent periodic operating regime of an electromagnetic impact drive. Russian Electrical Engineering. 2014, vol. 85, no. 12, pp. 757—760. DOI: 10.3103/S1068371214120104.

17. Ivashin V. V., Kudinov A. K., Pevchev V. P. Electromagnetic drives for impulse and vibration impulse technologies. Izvestiya vysshih uchebnyh zavedenij. Elektromekhanika. 2012, no. 1, pp. 72—75. [In Russ].

18. Neyman L. A., Neyman V. Yu., Obukhov K. A. New method of the synchronous vibratory electromagnetic machine mechatronic module control. 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices EDM 2017. Conference Proceedings. 2017, pp. 516—519. DOI: 10.1109/EDM.2017.7981806.

19. Neyman L. A., Neyman V. Yu. Simulation of dynamic processes in electromagnetic energy converters for force effects and lowvfrequency vibrations generation systems. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2015, vol. 326, no. 4, pp. 154—162.

20. Cherno A. A., Gurov A. P., Minchula A. S., Bezverhnij D. L. Modeling Electromechanical Processes in Energy-Saving Electromagnetic Drives of Vibration Installations. Elektrotekhnicheskie i komp’yuternye sistemy. 2011, no. 3, pp. 397—399. [In Russ].

21. Afanas’ev A. I., Kazakov Yu. M., Saitov V. I. Mathematical model of a resonant vibratory transport machine with a variable frequency of natural vibrations. Nauchnyj vestnik. 2016, no. 1 (7), pp. 132—141. [In Russ]. DOI: 10.17117/nv.2016.01.132.

22. Hendzel Z., Rykała Ł. Modelling of dynamics of a wheeled mobile robot with mecanum wheels with the use of Lagrange equations of the second kind. International Journal of Applied Mechanics and Engineering. 2017, vol. 22, no. 1, pp. 81—99. DOI: 10.1515/ijame-2017−0005.

23. Van Nguyen T., Petre R. A., Stroe I. Calculus of axial force in a mechanism using La-grange equations. INCAS Bulletin. 2016, vol. 8, no. 2, pp. 97—108. DOI: 10.13111/2066−8201.2016.8.2.8.

24. Petre R. A., Nichifor S. E., Craifaleanu A., Stroe I. Using Lagrange Equations to Study the Relative Motion of a Mechanism. International Journal of Aerospace and Mechanical Engi-neering. 2020, vol. 14, no. 10, pp. 421—425.

25. Suvorov I. F., Romanova V. V., Hromov S. V. Investigation of the influence of phase voltage asymmetry on the operating modes of asynchronous motors in the MATLAB / SIMULINK simulation environment. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Energetika. 2016, vol. 16, no. 3, pp. 72—83. [In Russ]. DOI: 10.14529/ power160309.

26. Xu L., Song J. G., Lin Q. Q. Brushless DC motor speed control system Simulink simulation. 2016 IEEE International Conference on Power and Renewable Energy (ICPRE). 2016, pp. 62—66. DOI: 10.1109/ICPRE.2016.7871173.

27. Kiyakli A. O., Solmaz H. Modeling of an electric vehicle with MATLAB/Simulink. International journal of automotive science and technology. 2018, vol. 2, no. 4, pp. 9—15. https://doi.org/10.30939/ijastech..475477.

28. Krutikov K. K., Rozhkov V. V. Features of modeling the electric and magnetic surface effect from alternating electromagnetic fields in FEMM. Elektrichestvo. 2020, no. 8, pp. 51—57. [In Russ]. DOI: 10.24160/0013-5380-2020-8-51−57.

29. Shevchenko V. P., Babiychuk O. B., Boltenkov V. O. Study of current transformers magnetic field by method final elements using the FEMM software complex. Applied aspects of information technology. 2019, vol. 2(4), pp. 317—327.

30. Tatevosyan A. S., Tatevosyan A.A., Zaharova N. V. Calculation of non-stationary magnetic field of the polarized electromagnet with the external attracted anchor. Journal of Physics: Conference Series. 2018, vol. 1050(1), art. 012086. DOI:10.1088/1742−6596/1050/1/012086.

31. Andreeva E. G., Semina I. A., Orlov A. S. The research of three-dimensional magnetic field of the hybrid magnetic system in the ANSYS MAXWELL program. Dynamics of Systems, Mechanisms and Machines (Dynamics). 2016, art. 7818964. DOI: 10.1109/ SIBCON.2015.7146974.

32. Andreeva E. G., Gritsay A. S. Classification and research of electro-technical devices with unclosed magnetic core. IOP Conf. Series: Journal of Physics: Conf. Series. 2019, vol. 1260, no. 5, article number 052001. DOI:10.1088/1742−6596/1260/5/052001.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.