Design of yielding support systems in salts

Construction of deep mines in salts is complicated by the fact that the excavation boundary deforms constantly during the whole operational period. The deformations of the mine boundary also decrease as the size of the excavation decreases. The most complicated case is a large deep excavation in salts because the expected deformations are more than 1 m. Conventional support cannot ensure the workability of the excavation because the stresses acting in the support are much higher than the strength of the support material. It is necessary to develop a special yielding support, that can withstand the load during the entire service life of the excavation. The design of yielding support for a large deep excavation in salts is given.

Keywords: salt, deep mine, yielding support, numerical modelling, foam concrete, big crosssection.
For citation:

Dementyeva A. V., Karasev M. A. Design of yielding support systems in salts. MIAB. Mining Inf. Anal. Bull. 2022;(10-1):136—144. [In Russ]. DOI: 10.25018/0236_1493_2022_101_ 0_136.

Issue number: 10
Year: 2022
Page number: 136-144
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_136
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Dementyeva A. V.1, Student, e-mail:, ORCID ID: 0000-00026484-2405;
Karasev M. A.1, Dr. Sci. (Eng.), Professor, Associated Professor, e-mail: Karasev_MA@, ORCID ID: 0000-0001-8939-0807;
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

Dementyeva A. V., e-mail:


1. Cantieni, L., Anagnostou, G. (2009). The interaction between yielding supports and squeezing ground. Tunnelling and Underground Space Technology, 24(3), 309−322. DOI: 10.1016/j.tust.2008.10.001.

2. Dwivedi, R., Singh, M., Viladkar, M., et al. (2013). Prediction of tunnel deformation in squeezing grounds. Engineering Geology, 161, 55−64. DOI: 10.1016/j.enggeo.2013.04.005.

3. Dwivedi, R., Singh, M., Viladkar, M., et al. (2014). Estimation of support pressure during tunnelling through squeezing grounds. Engineering Geology, 168, 9−22. DOI: 10.1016/j.enggeo.2013.10.020.

4. Agan, C. (2016). Prediction of squeezing potential of rock masses around the Suruç Water tunnel. Bulletin of Engineering Geology and the Environment, 75, 451−468.

5. Nopola, J. R., Vining, C. A. (2019). Considerations for effective ground support in evaporates. International Journal of Mining Science and Technology, 29, 113−118.

6. Wu, G., Chen, W., Tan, X., et al. (2020). Performance of New Type of Foamed Concrete in Supporting Tunnel in Squeezing Rock. International Journal of Geomechanics, 20(2), 04019173. DOI: 10.1061/(ASCE)GM.1943−5622.0001543.

7. Trushko, V. L., Protosenya, A. G. (2019). Prospects of geomechanics development in the context of new technological paradigm. Journal of Mining Institute, 236, 162−166. DOI: 10.31897/pmi.2019.2.162.

8. Solovyov, V. A., Aptukov, V. N., Vaulina, I. B. (2017). Maintaining mine workings in salt formations. MIAB. Mining Inf. Anal. Bull., 2, 344−356.

9. Tian, H., Chen, W., Yang, D., et al. (2016). Numerical analysis on the interaction of shotcrete liner with rock for yielding supports. Tunnelling and Underground Space Technology, 54, 20−28.

10. Ghorbani, M., Shahriar K., Sharifzadeh M., et al. (2020). A critical review on the developments of rock support systems in high stress ground conditions. International Journal of Mining Science and Technology, 30(5), 555−572.

11. Anagnostou, G., Cantieni, L. (2007). Design and analysis of yielding support in squeezing ground. 11th ISRM Congress, The Second Half-Century of Rock Mechanics.

12. Wu, K., Shao, Z., Qin, S. (2020). An analytical design method for ductile support structures in squeezing tunnels. Archives of Civil and Mechanical Engineering, 20, 91. DOI: 10.1007/s43452−020−00096−0.

13. Mezger, F., Ramoni, M., Anagnostou G., et al. (2017). Evaluation of higher capacity segmental lining systems when tunnelling in squeezing rock. Tunnelling and Underground Space Technology, 65, 200−214. DOI: 10.1016/j.tust.2017.02.012.

14. Wu, K., Shao, Z., Qin, S. (2020). A solution for squeezing deformation control in tunnels using foamed concrete: A review. Construction and Building Materials, 257, 119539. DOI: 10.1016/j.conbuildmat.2020.119539.

15. Golik, V. I., Dmitrak, Yu. V., Kachurin N. M., et al. (2020). Management of hardening mixtures properties when stowing mining sites of ore deposits. Journal of Mining Institute, 243, 285−292. DOI: 10.31897/pmi.2020.3.285.

16. Wu, G., Chen, W., Tian H., et al. (2018). Numerical evaluation of a yielding tunnel lining support system used in limiting large deformation in squeezing rock. Environmental Earth Sciences, 77(12), 439. DOI: 10.1007/s12665−018−7614−0.

17. Mezger, F., Ramoni, M., Anagnostou, G. (2018). Options for deformable segmental lining systems for tunnelling in squeezing rock. Tunnelling and Underground Space Technology, 76, 64−75.

18. Tian, H., Chen, W., Tan, X., et al. (2018). Numerical investigation of the influence of the yield stress of the yielding element on the behaviour of the shotcrete liner for yielding support. Tunnelling and Underground Space Technology, 73, 179−186. DOI: 10.1016/j.tust.2017.12.019.

19. Nguyen, T. T., Bui, H. H., Ngo, T. D., et al. (2017). Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete. Materials and Design, 130, 103−119. DOI: 10.1016/j.matdes.2017.05.054.

20. Amran, Y., Farzadnia, N., Ali, A. (2015). Properties and applications of foamed concrete. Construction and Building Materials, 101, 990−1005.

21. Falliano, D., Dominico, D., et al. (2018). Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density. Construction and Building Materials, 165, 735−749. DOI: 10.1016/j. conbuildmat.2017.12.241.

22. Wang, X., Liu, L., Zhou, H., et al. (2021). Improving the compressive performance of foam concrete with ceramsite: Experimental and meso-scale numerical investigation. Materials and Design, 208, 109938. DOI: 10.1016/j.matdes.2021.109938.

23. Vu, G., Iskhakov, T., Timothy, J., et al. (2020). Cementitious composites with high compaction potential: Modeling and calibration. Materials, 13(21), 4989. DOI: 10.3390/ma13214989.

24. Wang, H., Chen, W., Wang, Q., et al. (2016). Rheological properties of surrounding rock in deep hard rock tunnels and its reasonable support form. Journal of Central South University, 23, 898–905. DOI: 10.1007/s11771−016−3137−6.

25. Tan, X., Chen, W., Liu, H., et al. (2018). Stress-Strain Characteristics of Foamed Concrete Subjected to Large Deformation under Uniaxial and Triaxial Compressive Loading. Journal of Materials in Civil Engineering, 30(6), 04018095. DOI: 10.1061/(ASCE) MT.1943−5533.0002311

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.