Concept of integrated technical evaluation of mine shafts

Authors: Mashin A.N.

Currently in Russia, dozens of mine shafts sunk in the 1950s–70s are still employed in operating mines. Most of the shafts need repair and renewal of different complexity. The article discusses the concept of integrated technical evaluation of mine shafts, including three stages and three levels of on-site reconnaissance. The implementation matrix of the concept is described, and the case-studies of technical evaluation of long-term operating mine shafts are presented. The concept contains three stages of technical evaluation: determination of actual parameters of the rock–lining system; determination of actual load-bearing capacity margin of lining and adjacent rock mass stability; determination of interval and generalized criteria of mine shaft availability, as well as the surface, perimeter and deep-earth levels of reconnaissance. The scope of reconnaissance includes visual inspection of lining, a set of instrumental tests, core sampling, determination of concrete lining strength, geophysical and geomechanical analysis of adjacent rock mass, calculation and statistical processing of data with the subsequent categorization of technical availability of mine shafts. Finally, it is concluded on the necessity of a more accurate ranking of the technical availability categories with regard to further reconstruction and efficiency restoration in faulted mine shafts.

Keywords: vertical shaft, lining, concrete, technical availability, evaluation, load-bearing capacity, stability, defects, stresses, repair, reconstruction.
For citation:

Mashin A. N. Concept of integrated technical evaluation of mine shafts. MIAB. Mining Inf. Anal. Bull. 2023;(10):31-42. [In Russ]. DOI: 10.25018/0236_1493_2023_10_0_31.

Acknowledgements:
Issue number: 10
Year: 2023
Page number: 31-42
ISBN: 0236-1493
UDK: 622.25.(06)
DOI: 10.25018/0236_1493_2023_10_0_31
Article receipt date: 06.07.2023
Date of review receipt: 19.09.2023
Date of the editorial board′s decision on the article′s publishing: 10.09.2023
About authors:

A.N. Mashin, General Director, JSC Transinzhstroy, Moscow, Russia, e-mail: info@tinso.ru.

For contacts:
Bibliography:

1. Pleshko M. S., Pankratenko A. N., Pleshko M. V., Nasonov A. A. Assessment of stress— strain behavior of shaft lining in bottomhole area during sinking by real-time monitoring and computer modeling data. Eurasian Mining. 2021, vol. 35, no. 1, pp. 25—30. DOI: 10.17580/ em.2021.01.05.

2. Pleshko M. S., Sil'chenko Yu. A., Pankratenko A. N., Nasonov A. A. Improvement of the analysis and calculation methods of mine shaft design. MIAB. Mining Inf. Anal. Bull. 2019, no. 12, pp. 55—66. [In Russ]. DOI: 10.25018/02361493-2019-12-0-55-66.

3. Pleshko M., Meskhi B., Pleshko M. A new method for calculating the combined anchorconcrete support of underground structures. MATEC Web of Conferences. 2018, vol. 170, article 03023. DOI: 10.1051/matecconf/201817003023.

4. Kodnyanko E. V. Methodology for estimation of the operational state of the mine shaft reinforcement. Gornaya mekhanika i mashinostroenie. 2022, no. 2, pp. 52—56. [In Russ].

5. Alyamov A. R., Kalmykov V. N., Volkov P. V., Leontieva E. V., Gnedykh A. P., Magafurov M. I. Study of the intensity of corrosion of the surface of the metal grid of the repaired mount of the shaft «Skipovoy» SF JSC «Uchalinsky GOK». Aktual'nye problemy gornogo dela. 2018, no. 1, pp. 29—32. [In Russ].

6. Kibroev I. S., Manzhosov A. S., Alekseev A. A., Khanina I. A. Methods of nondestructive testing in assessing the condition of concrete fasteners and fastening space in mine shafts of Talnakh mines. Gornyi Zhurnal. 2022, no. 10, pp. 77—82. [In Russ]. DOI: 10.17580/gzh.2022.10.12.

7. Kozyrev A. A., Panin V. I. Development of geomechanical research in the Mining Institute of Kola Scientific Center RAS. Trudy Kol'skogo nauchnogo tsentra RAN. 2020, vol. 11, no. 6-19, pp. 30—44. [In Russ]. DOI: 10.37614/2307-5252.2020.6.19.003.

8. Sheng Z., Wenchao H., Yongsuo L., Yuchi Z. Thickness Identification of Tunnel Lining Structure by Time—Energy Density Analysis based on Wavelet Transform. Journal of Engineering Science and Technology Review. 2019, vol. 12, no. 4, pp. 28—37. DOI: 10.25103/jestr. 124.04.

9. Bruneau G., Tyler D. B., Hadjigeorgiou J., Potvin Y. Influence of faulting on a mine shaft — a case study: Part I — Background and Instrumentation. International Journal of Rock Mechanics and Mining Sciences. 2003, vol. 40, pp. 95—111. DOI: 10.1016/S1365-1609(02)00115-6.

10. Jendryś M. Analysis of stress state in mine shaft lining, taking into account superficial defects. IOP Conference Series Earth and Environmental Science. 2019, vol. 261, no. 1, article 012016. DOI: 10.1088/1755-1315/261/1/012016.

11. Pestrikova V. S., Tarasov V. V., Zagvozdkin I. V. Life cycles of the shaft complex system at the Verkhnekamskoe deposit. News of the Tula state university. Sciences of Earth. 2021, no. 3, pp. 213—221. [In Russ]. DOI: 10.46689/2218-5194-2021-3-1-207-215.

12. Chao C., Jian Z., Tao Z., Weixun Y. Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory. Natural Hazards. 2021, vol. 109, pp. 1—23. DOI: 10.1007/s11069-021-04885-5.

13. Cheng W., Zhishu Y., Weipei X., Ping Z., Fang Y. Experimental study on the dynamic mechanical properties of high-performance hybrid fiber-reinforced concrete of mine shaft lining. Journal of Materials Research and Technology. 2021, vol. 14, no. 5, pp. 888—900. DOI: 10.1016/j.jmrt.2021.07.015.

14. Niedbalski Z., Małkowski P. Difficulties in maintaining shaft lining — testing methods and repair methods — a case study. E3S Web of Conferences. 2020, vol. 201, article 01016. DOI: 10.1051/e3sconf/202020101016.

15. Korchak P. A., Karasev M. A. Geomechanical substantiation of the formation of zones of brittle fracture of rocks in the vicinity of the junctions of mine workings of the mines of JSC «Apatit». Sustainable development of mountain territories. 2023, vol. 15, no. 1(55), pp. 67—80. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-67-80.

16. Protosenya A. G., Verbilo P. E. Study of compressive strength of fractured rock massif. Journal of Mining Institute. 2017, vol. 223, pp. 51—57. [In Russ]. DOI: 10.18454/PMI.2017.1.51.

17. Kasparian E. V., Fedotova Y. V., Kuznetsov N. N. Development of ideas about the natural stress state of rock massifs. Trudy Kol'skogo nauchnogo tsentra RAN. 2019, vol. 10, no. 6-1, pp. 110—128. [In Russ]. DOI: 10.25702/KSC.2307-5252.2019.6.016/.

18. Kayumova A. N., Balek A. E., Kharisov T. F. Assessment of heading safety in closespaced permanent roadways in difficult geological and geotechnical conditions. MIAB. Mining Inf. Anal. Bull. 2022, no. 7, pp. 131—147. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_131.

19. Igolka D. A., Frank O. Accelerated driving of mine shafts by mechanized method. Russian Mining Industry Journal. 2020, no. 6, pp. 22—29. [In Russ]. DOI: 10.30686/1609-91922020-6-22-29.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.