Integrated deformation monitoring of the northwestern wall of Glavny open pit of EVRAZ KGOK

The article analyzes deformation of the northwestern wall of Glavny open pit of EVRAZ KGOK. The integrated monitoring was applied to study deformations and to ensure safety of mining operations. The integrated monitoring included the engineering and geological study of the structure and tectonics of the pit wall rock mass with mapping of unfavorably oriented extended cracks, faults and fragmentation zones, as well as the instrumental surveying observations using an electronic tacheometer, areal monitoring of the quarry sides with use of the RIEGL ground-based laser scanning system, inspection of displacements of check points of the geodynamic test site, and the estimate of changes in the stress–strain behavior of pit wall rock mass using the satellite geodesy technologies. The studies of deformation development in rock mass after recommencement of mining operations, including blasting on the northwestern pit wall are presented. It is found that gravitational and tectonic deformations prevail periodically. Initially, blasting, excavation and loading operations activated movability of rock mass. Subsequently, after mining-out of upper part of the pit wall and with increasing depth of the open pit, the displacement amplitude and PPV in the direction toward the mined-out void decreased. It is recommended to reduce deformations by implementing simultaneous operation on a few benches to provide the cutback at the top of the pit wall and with intent to diminish the active pressure wedge.

Keywords: open pit, pit wall, bench stability, rock mass, stress–strain behavior, integrated monitoring, surveying observations, deformation rate.
For citation:

Yakovlev A. V., Perekhod T. M., Shimkiv E. S., Tynynyka L. V. Integrated deformation monitoring of the northwestern wall of Glavny open pit of EVRAZ KGOK. MIAB. Mining Inf. Anal. Bull. 2021;(5—2):181—191. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_181.

Acknowledgements:

The article is prepared under the State Contract on the Methods to Take into Account Transient Technological Processes in Mining Deep-Sated Mineral Deposits of Complex Structure, Topic No. 0405-2019-0005.

Issue number: 5
Year: 2021
Page number: 181-191
ISBN: 0236-1493
UDK: 622.271.333:624.131.537
DOI: 10.25018/0236_1493_2021_52_0_181
Article receipt date: 15.12.2020
Date of review receipt: 19.04.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Yakovlev A. V., Head of Laboratory of Open Geotechnology, Cand. Sci. (Eng.),
Perekhod T. M., Leading Engineer,
Shimkiv E. S., Research Worker,
Institute of Mining Ural branch of Russian Academy of Sciences, Ekaterinburg, Russia, lubk_igd@mail.ru;
Tynynyka L. V., Head of the mine surveying department of SGM AO EVRAZ KGOK, Kachkanar, Sverdlovsk region, Russia.

 

For contacts:
Bibliography:

1. Yakovlev A. V., Ermakov N. I. Ustoychivost bortov rudnykh karieov pri deystvii tektonicheskikh napryazheniyd massive [Stability of open pit walls under the action of tectonic stresses in the rock mass]. Ekaterinburg, Institute of Mining, Ural Branch of RAS, 2006, 231 p. [In Russ.]

2. Semenova I. E., Kozyrev A. A., Rybin V. V., Avetisyan I. M. Zakonomernosti pereraspredeleniya poley napryazheniy pri formirovanii glubokoy kariernoy vyemki [Regularities of redistribution of stress fields during the formation of deep open pit], Tretiya tektonicheskaya konferentsiya v IFZ RAN. Tektonophisika i aktualnye voprosy nauk o Zemle: sb. dokladov Vserossiyskoy konferentsii v 2-kh tomakh. Vol. 2, Moscow, the Institute of Earth’s Physics of RAS, 2012, pp. 326—330 [In Russ].

3. Yakovlev A. V., Panzhin A. A., Ruchkin V. I. Monitoring napryazhonnodeformirovannogo sostoyaniya bortov karierov OAO “EVRAZ GKOK” [Monitoring of the stress-deformed state of the open pit wells of JSC EVRAZ Kachkanarsky MPS], Monitoring pri vedenii gornych rabot: Vserossiyskaya nauch.-tekhn. konf. s mezhdunarodnym uch. (September 24—27, 2013). Apatity, GoI KSC RAS, 2013, p. 83—92. [In Russ.].

4. Yakovlev V. L., Yakovlev A. V. Assessment of Stress State of Near-Edge Rock Masses of Open-Pit Mines, Physiko-techn. problemy razrab. poleznykh iskopaemykh, 2007, no. 3, pp. 36—45. [In Russ.].

5. Kuzmin Yu. O. Modern geodynamics: from movements of the earth’s crust to monitoring critical objects, Fizika Zemli, 2019, no. 1, pp. 78—103 [In Russ.].

6. Kasparyan E., Fedotova I. Stress-deformed state in the rock mass of the Кhibiny deposits and tasks of geodynamical zoning / Proceedings 15th International Multidisciplinary Scientific GeoConference SGEM 2015. Albena, Bulgaria. June 16 25, 2015. Book 1. Vol. 2. pp. 759—766.

7. Seredin V. V., Khrulev A. S., Pushkareva M. В. Assessment of the stress state of rocks and geomaterials, FTPRPI. 2017, no. 1, 53—57. [In Russ.].

8. Qinghua Lei, Ke Gao. A numerical study of stress variability in heterogeneous fractured rockss. International Journal of Rock Mechanics and Mining Sciences. 2019. Vol. 113. p. 121—133.

9. Kuzmin Yu. O., Zhukov V. S., Sovremennaya geodinamika i variatsii fizicheskikh svoystv gornykh porod [Modern geodynamics and variations of physical properties of rocks]. Moscow: Moscow State University Press, 2004, 262 p. [In Russ.]

10. Lovchikov A. V. Tekhnogennaya seismichnost pri razrabotke Lovozerskogo redkozemelnogo mestorozhdeniya [Technogenic seismicity during development of the

Lovozerskiy rare-metal deposit], Triggernye effekty v geosistemakh: materialy IV Vserossiyskoy konferentsii s mezhdunorodnym uchastiem (Moscow, June 6—9, 2017), Moscow, the Institute of Mining of RAS, 2017, pp. 334—340. [In Russ.].

11. Trofimov V. A., Makeeva T. G., Filippov Yu. A. Otsenka ustoychivosti porodnogo massiva [Assessment of rock mass stability], Triggernye effekty v geosistemakh: materialy IV Vserossiyskoy konferentsii s mezhdunorodnym uchastiem (Moscow, June 6—9, 2017), Moscow, the Institute of Mining of RAS, 2017, pp. 340—350. [In Russ.].

12. Panzhin A. A. Spatial-Temporal Geodynamic Monitoring at Mining Objects, Gorny zhurnal, 2012, no. 1, pp. 39—43 [In Russ.].

13. Panzhin A. A., Panzhina N. A. On the Peculiarities of Geodynamic Monitoring in the Development of Mineral Deposits of the Urals with the Use of Satellite Geodesy Complexes, Phisiko-tekhn. problemy razrab. poleznykh iskopaemykh, 2021, no. 6, 46—55 [In Russ.].

14. Panzhin A. A. Study of Harmonics of Quasi-Periodic Recent Deformations of Rock Mass at Large Spatial and Temporal Databases, MIAB. Mining Inf. Anal. Bull. 2010, no. 9, pp. 312—331 [In Russ.].

15. Panzhin A. A. Study of Short-Period Deformations of Fault Zones of the Upper Part of the Earth’s Crust Using Satellite Geodesy Systems, Marksheideriya and nedropolzovanie, 2003, no. 2(8), 43—54 [In Russ.].

16. He X., Hua X., Yu K., Xuan W., Lu T., Zhang W., Chen X. Accuracy enhancement of GPS time series using principal component analysis and block spatial filtering. Advances in Space Research. 2015. Vol. 55, Issue 5. March. pp. 1316–1327.

17. He X., Montillet J.-P., Fernandes R., Bos M., Yu K., Hua X., Jiang W. Review of current GPS methodologies for producing accurate time series and their error sources. Journal of Geodynamics. 2017. Vol. 106. May. pp. 12–29.

18. Panzhin А. А., Panzhina Н. А. Study of the Geodynamic Activity of the Rock Mass in the Open-Pit Mines and Tailings of the Kachkanarsky Mining and Processing Plant, MIAB. Mining Inf. Anal. Bull, 2020, no. 3—1, 178—187 [In Russ.].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.