Comprehensive safety assessment of radioactive waste disposal in clayey formations (case study of St. Petersburg region)

According to the IAEA requirements, disposal of radioactive waste (RAW) in geological formations is one of the ways of RAW management. It is noted that an analysis of the safety of RAW disposal in lithified clay formations requires an assessment of the underground environment as a multicomponent system. Subsurface structures of RAW repositories are in complex interaction with other components of the subsurface medium. The Upper Vendian clay and the Lower Cambrian blue clay are considered promising formations for waste burial in the St. Petersburg region. The authors argue that these soils should be considered as fissured strata exposed to confined mineralized water with a low redox potential (-35 mV) and a rich anaerobic microbial community. Complex patterns of corrosion of tunnel lining materials are detected. It is concluded that similar processes will take place in the linings of RAW repositories. The impact of the radiolysis on the clays, engineering barrier materials and intensification of microbial activity are considered. Accordingly, the use of Vendian and Lower Cambrian clays as host formations does not guarantee reliable and safe isolation of these wastes, which requires further comprehensive theoretical and applied research.

Keywords: clayey formations, radioactive waste, disposal, corrosion, microbial activity, mineralized water, radiolysis.
For citation:

Dashko R. E., Lokhmatikov G. A. Comprehensive safety assessment of radioactive waste disposal in clayey formations (case study of St. Petersburg region). MIAB. Mining Inf. Anal. Bull. 2022;(9−1):66—76. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_66.

Acknowledgements:
Issue number: 10
Year: 2022
Page number: 66-76
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_66
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Dashko R. E.1 , Dr. Sci. (Geology and Mineralogy), Professor, e-mail: regda2002@mail.ru, ORCID ID: 0000-0002-2469-0910;
Lokhmatikov G. A.1 , Postgraduate Student, e-mail: kriptoforan@gmail.com, ORCID ID: 0000-0001-9134-3022;
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

Dashko R. E., e-mail: regda2002@mail.ru.

Bibliography:

1. International Atomic Energy Agency. (2020). Design Principles and Approaches for Radioactive Waste Repositories. Nuclear Energy Series No, NW-T-1.27, 89.

2. Dashko, R. E., Lange, I.Yu. (2015). Engineering geological analysis and assessment of saturated argillaceous soils as structure foundation. Journal of Mining Institute, 624630. DOI: 10.25515/PMI.2017.6.624.

3. Podkovyrov, V. N., Maslov, A. V., Kuznetsov, A. B., Ershova ,V. B. (2017). Litostratigraphy and geochemistry of Upper Vendian – Lower Cambrian deposits of the Northeastern Baltic monocline. Stratigraphy and Geological correlation, 25(1), 1−20. DOI: 10.1134/S086959381606006X.

4. Golubkova, E.Yu., Cushy, E. A., Tarasenko, A. B. (2020). Fossil Organisms of the Kotlin Regional Stage of the Upper Vendian of the Northwestern Russian Platform (Leningrad Region). Paleontological Journal, 4(54), 420−428. DOI: 10.1134/S0031030120040061.

5. Lomtadze, V. D. (1958). Engineering and geological classification of clay rocks. Journal of Mining Institute, 34(2), 189.

6. Chaminé, H. I., Afonso, M. J., Trigo, J. F. et al. (2021). Site appraisal in fractured rock media: coupling engineering geilogical mapping and geotechnical modeling. Europian Geologist Journal, 51, 30−38. DOI: 10.5281/zenodo.4948771.

7. Davidson, J., Castalletti, M., Torres, I. (2019). Pile driving prediction for monopile foundatios in London clay. Proceedings of the XVII ECSMGE, 1−9. DOI: 17ecsmge-2019-Y-XXXX.

8. Podkovyrov, V. N., Vereschyagin, O. S., Galankina, O. L. (2016). Clay deposits of transitional horizons of the Vendian – Lower Cambrian Baltic Monocline: Mineralogy and Conditions of formation. Sedimentary complexes of the Urals and adjacent regions and their mineralogy, 205.

9. Information bulletin on the state of the subsurface of the of the North-Western Federal District territory of the Russian Federation in 2020, 2021.

10. Shatskaya, E. Yu. (2009). Analysis and assasment of natural and man-made factors of the formation of corrosive aggressiveness of the underground environment of St. Petersburg in relation to building materials. Journal of Mining Institute, 182, 50.

11. Aleksandrova, O. Yu. (2007). The experience of studying natural and man-made processes in theunderground space of St. Petersburg (using the example of the Obukhovo – Tybatskoye distillation tunnels). Journal of Mining Institute, 170, 7.

12. Volokhov, E. M., Kireeva, V. I. (2017). Analysis of the results of field studies of geomechanical processes in construction of large transport tunnels with the use of a mechanized tunnelboring complex with work face earth pressure balance in the special conditions of voids compensation in the rock massif. ARPN Journal of Engineering and Applied Sciences, 20(12), 5811−5821.

13. Demenkov, P. A., Shubin, A. A. (2016). Improvement of design, geomechanical substantiation and development of construction technologies for the closed column station type of the deep-laid subway. International Journal of Applied Engineering Research, 3 (11),1754−1761.

14. Potemkin, D. A., Trushko, O. V. (2015). Mechanisms of formation of displacement zones in soil mass during construction of Urban inclined transport tunnels. BBRA – Biosciences, Biotechnology Research Asia, 3(12), 3079−3089. DOI: 10.13005/bbra/1992.

15. Protosenya, A. G., Karasev, M. A., Verbilo. P. E. (2017). The prediction of elasticplastic state of the soil mass near the tunnel with taking into account its strength anisotropy. International Journal of Civil Engineering and Technology, 11(8), 682−694.

16. Lavrenko, S. A., Korolev, I. A. (2018). Analysis of Cambrian clay cutting during SaintPetersburg subway construction. Gornyi Zhurnal, 2, 53−58. DOI: 10.17580/gzh.2018.02.08.

17. Gusev, V. N., Maliukhina, E. M., Volokhov, E. M., et al. (2019). Assessment of development of water conducting fractures zone in the massif over crown of arch of tunneling (construction). International Journal of Civil Engineering and Technology, 2(10), 635−643.

18. Izotova, A. V., Belozersky, G. N., Savonenkov, V. G., Shabalev, S. I. (2017). The role of the natural and engineered barriers in the disposal of radioactive waste. Vestnik of St. Petersburg University, 4, 110−123.

19. Rumynin, V. G. (2017). Experience of studying the clay masses and crystalline coreareas as geological environment for RW final isolation. Radioactive Waste, l(1), 42−53.

20. Rumynin, V. G., Vladimirov, K. V., Nikulenkov, A. M., Rozov, K. B., Erzova, V. A. (2021). The status and trends in radioactive contamination of groundwater at a LLW-ILW storage facility site near Sosnovy Bor (Leningrad region, Russia). Journal of Environmental Radioactivity, 237. DOI: 10.1016/j.jenvrad.2021.106707.

21. Allard, T., Balan, E., Calas, G., Fourdrin, C., Morichon, E., Sorieul, S. (2012). Radiation-induced defects in clay minerals: A review. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 277, 112−120. DOI: 10.1016/j.nimb.2011.12.044.

22. Loveland, W. D., Morrissey, D. J., Seaborg, G. T. (2017). Modern nuclear chemistry. John Wiley & Sons, 737.

23. Fourdrin, C., Aarrachi, H., Latrille, C., Esnouf, S., Bergaya, F., Le Caër, S. (2013). Water Radiolysis in Exchanged-Montmorillonites: The H2 Production Mechanisms. Environmental science & technology, 2013, 47( 16), 9530−9537. DOI: 10.1021/es401490t.

24. Sauvage, J. F., Flinders, A., Spivack, A. J., et al. (2021). The contribution of water radiolysis to marine sedimentary life. Nature communications, 12(1), 1−9. DOI: 10.1038/ s41467−021−21218-z.

25. Lopez-Fernandez, M., Vilchez-Vargas, R., Jroundi, F. et.al. (2018). Microbial community changes induced by uranyl nitrate in bentonite clay microcosms. Applied Clay Science, 160, 206−216. DOI: 10.1016/j.apgeochem.2014.06.022.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.