Software package for data processing in microseismic monitoring in mineral mining

An important source of information on rock mass condition is seismic radiation of geodynamic events. One of the technologies to record and study seismic signals is microseismic monitoring (MM). It is possible to perform microseismic monitoring in operating mines but the data feature a high noise in this case. The noise affects the accuracy of parameters of seismic events and, as a consequence, the data interpretation quality. For this reason, it is required to create the noise-immune systems for the MM data processing. This article presents a software package meant to process MM data on geodynamic events in the course of mineral mining. The processing package uses the authorial methods of amplification of useful signals and suppression of noise waves. The article offers a brief description of functions of each module in the package and the numerical algorithms. The software package testing is described as a case-study of processing of the synthetic and field data. The developed software package allows the improved accuracy of the event identification in the problems connected with location of seismic sources with different focal mechanisms at a low signal/noise ratio. The capacity of the software package to identify events within an assigned geological medium while suppressing all signals from the sources outside this medium is illustrated.

Keywords: microseismic monitoring, geodynamic processes, seismic events, source location, mineral mining, seismic data processing, seismic noise.
For citation:

Azarov A. V., Serdyukov A. S. Software package for data processing in microseismic monitoring in mineral mining. MIAB. Mining Inf. Anal. Bull. 2023;(2):58-71. [In Russ]. DOI: 10.25018/0236_1493_2023_2_0_58.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 20-77-10023.

Issue number: 2
Year: 2023
Page number: 58-71
ISBN: 0236-1493
UDK: 550.34+550.8.05
DOI: 10.25018/0236_1493_2023_2_0_58
Article receipt date: 29.08.2022
Date of review receipt: 05.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.01.2023
About authors:

A.V. Azarov, Researcher, Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia, e-mail: antonazv@mail.ru, ORCID ID: 0000-0001-6967-4239,
A.S. Serdyukov, Cand. Sci. (Phys. Mathem.), Senior Researcher, Trofimuk Institute of Petroleum Geology and Geophysics of Siberian, Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia, e-mail: aleksanderserdyukov@ya.ru, ORCID ID: 0000-0035-8563-5708.

 

For contacts:

A.S. Serdyukov, e-mail: aleksanderserdyukov@ya.ru.

Bibliography:

1. Rasskazov M. I., Gladyr A. V., Tereshkin A. A., & Tsoi D. I. Seismoacoustic rock pressure control system at the Mir underground mine. Problems of Subsoil Use. 2019, no. 2 (21), pp. 56—61. [In Russ].

2. Gladyr A. V., Kursakin G. A., Rasskazov M. I., Konstantinov A. V. Method to detect hazardous areas in rock mass from seismoacoustic observations. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 21—32. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-21-32.

3. Li L., Tan J., Wood D. A., Zhao Z., Becker D., Lyu Q., Chen H. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel. 2019, vol. 242, pp. 195—210.

4. Sharapov I. R., Feofilov S. A. Ground passive microseismic monitoring in the study, development and operation of subsoil in the oil and gas and mining industries. Pribory i sistemy razvedochnoy geofiziki. 2021, no. 3, pp. 10—19. [In Russ].

5. Razumov E. E., Rukavishnikov G. D., Mulev S. N., Prostov S. M. Seismic activity in rock mass during mining operations in Vorkutaugol’s Komsomolskaya Mine. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 104—114. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_104.

6. Verdon J. P., Kendall J. M., Butcher A., Luckett R., Baptie B. J. Seismicity induced by longwall coal mining at the Thoresby Colliery, Nottinghamshire, UK. Geophysical Journal International. 2018, vol. 212, no. 2, pp. 942—954.

7. Zlobina T. V. Influence of width and height of rooms on microseismic activity in potash mines. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 136—145. [In Russ]. DOI: 10.25018/ 0236-1493-2019-08-0-136-145.

8. Verkholantseva T. V., Diaghilev R. A. Influence of backfilling on seismic activity in potash mines. MIAB. Mining Inf. Anal. Bull. 2016, no. 12, pp. 115—123. [In Russ].

9. Trifu C. I., Shumila V. Microseismic monitoring of a controlled collapse in Field II at Ocnele Mari, Romania. Pure and Applied Geophysics. 2010, vol. 167, no. 1, pp. 27—42.

10. Rasskazov N. Kontrol' i upravlenie gornym davleniem na rudnikakh Dal'nevostochnogo regiona [Control and management of rock pressure in the mines of the Far East region], Moscow, Izd-vo «Gornaya kniga», 2008, 329 p.

11. Gladyr A. V. Integration of microseismic and geoacoustic data of geomechanical monitoring. MIAB. Mining Inf. Anal. Bull. 2017, no. 6, pp. 220—234. [In Russ].

12. Romanov V. V., Malsky K. S., Dronov A. N. Application of seismic vibration records in studies of mass blasting effect on excavations in mines. MIAB. Mining Inf. Anal. Bull. 2016, no. 5, pp. 293—300. [In Russ].

13. Malovichko D. A., Linch R. E. Microseismic monitoring of quarry sides. Gornoe ekho. 2006, no. 2, pp. 21. [In Russ].

14. Cesca S., Grigoli F. Full waveform seismological advances for microseismic monitoring. Advances in Geophysics. 2015, vol. 56, pp. 169—228.

15. Sen A. T., Cesca S., Bischoff M., Meier T., Dahm T. Automated full moment tensor inversion of coal mining-induced seismicity. Geophysical Journal International. 2013, vol. 195, no. 2, pp. 1267—1281.

16. Jiang Z., Li Q., Hu Q., Chen J., Li X., Wang X., Xu Y. Underground microseismic monitoring of a hydraulic fracturing operation for CBM reservoirs in a coal mine. Energy Science & Engineering. 2019, vol. 7, no. 3, pp. 986—999.

17. Mueller M., Thornton M., Eisner L. Uncertainty in surface microseismic monitoring. ASEG Extended Abstracts. 2013, no. 1, pp. 1—4.

18. Lomakin I. S. Deformirovanie i razrushenie nesushchikh elementov kamernoy sistemy razrabotki v usloviyakh sloisto-neodnorodnogo stroeniya porodnogo massiva [Deformation and destruction of the load-bearing elements of the chamber development system in the conditions of the layered-heterogeneous structure of the rock mass], Candidate’s thesis, Perm, 2015, 197 p.

19. Azarov A. V., Serdyukov A. S., Gapeev D. N. Research note: Frequency domain orthogonal projection filtration of surface microseismic monitoring data. Geophysical Prospecting. 2020, vol. 68, no. 2, pp. 382—392.

20. Serdyukov A. S., Yablokov A. V., Duchkov A. A., Azarov A. A., Baranov V. D. Slant f-k transform of multichannel seismic surface wave data. Geophysics. 2019, vol. 84, no. 1, pp. A19—A24.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.