Geoecological hazard monitoring in geodynamic interaction of subsoil use objects

On the basis of ideas about the critically stressed state of the Earth’s crust, a hypothesis is put forward about the nature of the remote interaction of objects of subsoil exploitation and the associated component of environmental hazard. From the condition that the Earth’s crust is in a kind of critically stressed state from the Earth’s surface to a certain depth, it is proposed to estimate the distance at which objects of subsoil exploitation can interact geodynamically. Under this assumption, the distance between geodynamically interacting objects can vary depending on the thickness of the critically stressed state layer in the Earth’s crust and reach tens or even hundreds of kilometers. The situation with the coal region Kuzbass is considered as an example. It is proposed to design geodynamic test sites to control geomechanical, geodynamic processes and the ecological situation at subsoil exploitation facilities taking into account the interaction zone of such facilities. The recommendations are aimed at improving environmental and industrial safety during the construction and operation of a production facility and infrastructure located in the zone of influence of the subsoil use facility.

Keywords: object of subsoil exploitation, critically stressed state of the Earth’s crust, geodynamic interaction, geodynamic testing ground, environmental safety.
For citation:

Batugin A. S., Shevchuk S. V., Shermatova S. S., Golovko I. V., Byambasuren Zunduizhamts. Geoecological hazard monitoring in geodynamic interaction of subsoil use objects. MIAB. Mining Inf. Anal. Bull. 2021;(10-1):63—73. [In Russ]. DOI: 10.25018/0236_1493_ 2021_101_0_63.

Acknowledgements:

The study was supported by the Russian Government, Aid Grant Agreement No. 13.2251.21.0035.

Issue number: 10
Year: 2021
Page number: 63-73
ISBN: 0236-1493
UDK: 551.2/3; 504.058
DOI: 10.25018/0236_1493_2021_101_0_63
Article receipt date: 30.06.2021
Date of review receipt: 29.07.2021
Date of the editorial board′s decision on the article′s publishing: 10.09.2021
About authors:

Batugin A. S.1, Dr. Sci. (Eng.), professor, as-bat@mail.ru;
Shevchuk S. V.1, post-graduate student, Shevchuk.Stepan@yandex.ru;
Shermatova S. S.1, post-graduate student, s_shermatova@inbox.ru;
Golovko I. V.1, Lecturer, no.va-ya08@mail.ru;
Byambasuren Zunduizhamts1, post-graduate student, zundui.rgi@gmail.com;
1 NUST «MISiS», Moscow, Russia.

 

For contacts:
Bibliography:

1. Fedotova Y., Kozyrev A., Akkuratov M., Zhukova S. Rock mass watering impact on induced seismicity in junction zone between underground mine and open-pit mine. Abstract book ESC 2010, 6—10 September 2010, Montpellier, France/32nd European Seismological Commission General Assembly Abstract book (ESC 2010), 2010, p. 157.

2. Batugina I. M., Petuhov I. M. Geodinamicheskoe rajonirovanie mestorozh-denij pri proektirovanii i ekspluatacii rudnikov [Geodynamic zoning of deposits in the design and operation of mines]. Moscow: Nedra, 1988. 166 p. [In Russ]

3. Kundu, B., Vissa N. K., Gahalaut V. K. Influence of anthropogenic groundwater unloading in Indo-Gangetic plains on the 25 April 2015 Mw 7.8 Gorkha, Nepal earthquake. Geophys. Res. Lett., 2015, Vol. 42. pp.10607—10613.

4. Konstantino.va S. A., Hronusov V. V., Dubinskij A. V. On the relevance of the problem of geodynamic safety in the underground development of the Verkhnekamskoe potash and potassium-magnesium salts deposit. Problems of geodynamic safety. 2nd international workshop. St. Petersburg, 2017, pp. 94—101. [In Russ]

5. Yakovlev, D. V., Lazarevich, T. I., Tsirel’, S. V. Natural and induced seismic activity in Kuzbass. Journal of Mining Science, 2013, Vol.49, no. 6 pp. 862—872. DOI:10.1134/ S1062739149060038 [In Russ]

6. Adushkin V. V., Turuntaev S. B. Tekhnogennaya sejsmichnost’ inducirovannaya i triggernaya [Technogenic seismicity induced and trigger]. Moscow: IDG RAN, 2015. 364 p. [In Russ]

7. Kamnev, E. N., Morozov, V. N., Tatarino.v, V. N., Kaftan, V. I. Geodynamic aspects of investigations in underground research laboratory (Nizhnekansk massif). Eurasian Mining, 2018, no. 2, pp. 11—14. DOI:10.17580/em.2018.02.03.

8. Kaledina N. O., Kolikov K. S., Kobylkin S. S. Department of Safety and Ecology of Mining: Past, Present and Future. Gornyj zhurnal, 2018, no. 3, pp.21—28. DOI: 10.17580/ gzh.2018.03.04 . [In Russ]

9. Panzhin A. A., Panzhina N. A. Monitoring of geodynamic processes in mining enterprises and urban areas. MIAB. Mining Inf. Anal. Bull., 2007, no. 3, pp. 171—183. [In Russ]

10. Panzhin, A. Identification of geodynamic movements based on the re-sults of geodetic monitoring measurements. Paper presented at the E3S Web of Conferences, 2020, Vol.192. DOI:10.1051/e3sconf/202019204001.

11. Smirno.v V. A. Fizicheskie processy v ochagah gornyh udarov i regional’-nyj prognoz ih po geofizicheskim polyam [Physical processes in the foci of rock burts and their regional prediction by geophysical fields], Doctor’s thesis. Saint Petersburg: VNIMI, 1991. 51 p. [In Russ]

12. Sadykova A. Model of the seismic process during the preparation periods for strong earthquakes in the no.rthern Tien Shan. Modern geodynamics and seismic risk in Central Asia, 2004, pp. 244—249.

13. Balovtsev S. V., Skopintseva O. V. Assessment of the influence of re-turned mines on aerological risks at coal mines. MIAB. Mining Inf. Anal. Bull., 2021, Vol. 2—1, pp. 40—53. [In Russ]. DOI: 10.25018/0236—1493—2021—21—0-40—53. [In Russ]

14. Kaledina, N., & Malashkina, V. Preliminary and post-working degassing for effective and safe mining. Paper presented at the 23rd Annual International Pittsburgh Coal Conference, PCC Coal-Energy, Environment and Sustainable Development. 2006.

15. Kobylkin S. S., Kobylkin A. S. 3D modeling in engineering calculations for mine rescue tactics. Gornyj zhurnal, 2018, no. 5, pp.82—85. [In Russ]

16. Kulikova, E. Y., Ivannikov, A. L. The terms of soils removal from the defects of the underground structures’ lining. Paper presented at the Journal of Physics: Conference Series, 2020, Vol. 1425(1) DOI:10.1088/1742—6596/1425/1/012062.

17. Pedchik A., Chmykhalova S., Shevchuk S., Shentseva S. Allowance for variability of rock mass characteristics along the line of underground excavations in design calculation and cost estimation. Gornyj zhurnal, 2016, no. 12, pp. 37—39. [In Russ]

18. Dzhumayan, N. R., Nastavkin, A. V. Maceral and chemical compositions of brown coals from the mugunsk deposit. Solid Fuel Chemistry, 2019, Vol. 53, no. 4, pp. 197—201, DOI:10.3103/S0361521919040050.

19. Galchenko Yu. P., Eremenko V. A., Myaskov A. V., Kosyreva M. A. Solution of geoecological problems in underground mining of deep iron ore deposits. Eurasian Mining, 2018, no. 1, pp. 35—40, DOI: 10.17580/em.2018.01.08.

20. Slastuno.v, S. V., Yutyaev, E. P., Mazanik, E. V., Sadov, A. P., Ponizov, A. V. Ensuring methane safety of mines on the basis of deep degassing of coalseams in their preparation for intensive development. Ugol, 2019, no. 7, pp. 42—47, DOI:10.18796/0041—5790— 2019—7-42—47. [In Russ]

21. Petuhov I. M. Gornye udary na ugol’nyh shahtah [Rock burts in coal mines]. SaintPetersburg: VNIMI, 2004. 204 p. [In Russ]

22. Batugin A. A proposed classification of the Earth’s crustal areas by the level of geodynamic threat. Geodesy and Geodynamics, 2021, no. 12, pp. 21—30. DOI:10.1016/j. geog.2020.10.002.

23. Foulger G. R., Wilson M. P., Gluyas J. G., Julian B. R., Davies R. J. Global review of human-induced earthquakes. Earth-Science Reviews, 2018, Vol. 178, pp. 438—514.

24. Emano.v A. F., Emano.v A. A., Leskova EV., Fateev A. V. Semin A.Yu. Seismic activation at coil mining in Kuzbass. Fiz. Mezomekh., 2009, Vol. 12, no. 1 pp. 37—43. [In Russ]

25. Mustafin, M. G., Grischenkova, E. N. Earth surface monitoring on undermined territories. Paper presented at the Inno.vation-Based Development of the Mineral Resources Sector: Challenges and Prospects 11th Conference of the Russian-German Raw Materials, 2018, pp. 95—102.

26. Zhang, Y., Feng, H., & Qu, J. (2019). Case study on the surface settlement induced by shielding curved twin tunnels. Journal of University of Shanghai for Science and Technology, 2019, Vol. 41(1), pp. 89—96. DOI:10.13255/j.cnki.jusst.2019.01.014.

27. Myaskov A. V., Popov, E. M., Popov, S. M. Prospects for the use of mines in East Donbass as underground gas storage facilities in the integral gas-supply system of southern Russia. Gornyi Zhurnal, 2018, no. 3, pp. 33—36. DOI:10.17580/gzh.2018.03.05 [In Russ]

28. Rebetsky Y. L., Lermontova, A. S. On the long-range influence of earthquake rupture zones. Journal of Volcanology and Seismology, 2018, Vol.12 no. 5, pp. 341—352. DOI:10.1134/S0742046318050068.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.