Analysis of properties of deafeners to design personal ear protectors

The article reviews some basic researches into acoustic properties of different materials suitable for manufacturing of personal hearing protection devices. The major after-effects of long-term noise exposure of personnel in the coal mining industry are listed. Based on the review, it is summarized that it is of the current concern to create a universal effective deafener. To this end in view, acoustic absorption properties of two porous materials and one acoustic membrane are studied. The main assessment criterion is the ability to absorb noise generated by mining machines during underground coal cutting in the mediumand high-frequency bands. The acoustic design provides the acoustic absorption ratios. The found acoustic characteristics are compared with the regulatory requirements to determine the noise protection class. The best effective deafener is identified. The authors propose a combination of deafeners to ensure industrial noise absorption within the whole frequency range. The result is compared with the device available on the market. The authors come to a conclusion on the need to continue the studies into the properties of a combination of acoustic materials to absorb sound.

Keywords: noise protection, acoustic absorption, industrial noise, perceptive deafness, noise sources, personal protectors, porous materials.
For citation:

Rudakov M. L., Duka N. E. Analysis of properties of deafeners to design personal ear protectors. MIAB. Mining Inf. Anal. Bull. 2022;(3):165-180. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_165.

Acknowledgements:
Issue number: 3
Year: 2022
Page number: 165-180
ISBN: 0236-1493
UDK: 331.45
DOI: 10.25018/0236_1493_2022_3_0_165
Article receipt date: 06.12.2021
Date of review receipt: 12.01.2022
Date of the editorial board′s decision on the article′s publishing: 10.02.2022
About authors:

M.L. Rudakov1, Dr. Sci. (Eng.), Professor, e-mail: Rudakov_ML@pers.spmi.ru, ORCID ID: 0000-0001-7428-5318,
N.E. Duka1, Graduate Student, e-mail: duka.nikita996@mail.ru,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

N.E. Duka, e-mail: duka.nikita996@mail.ru.

Bibliography:

1. Dyakovich M. P., Semenikhin V. A., Raudina S. N. Health-related quality of life in patients with sensorineural hearing loss of occupational genesis. Meditsina v Kuzbasse. 2017, no. 4, pp. 80—85. [In Russ].

2. Madahana M. C., Nyandoro O. T., Moroe N. F. Engineering noise control for mines: Lessons from the world. South African Journal of Communication Disorders. 2020, vol. 67, no. 2, article 684. DOI: 10.4102/sajcd.v67i2.684.

3. Qi Z. Q., Wang H., Chang W., Wang Q. Analysis for the Influence of Industrial Noise on Brain Cognition of Workers. Dongbei Daxue Xuebao/Journal of Northeastern University. 2017, vol. 38, no. 11, pp. 1590—1594. DOI: 10.12068/j.issn.1005-3026.2017.11.015.

4. Alyanin A. F., Gallyamov M. A., Abdrakhmanova E. N. Industrial noise. Problems and solutions. Oil and Gas Business. 2019, no. 2, pp. 128—142. DOI: 10.17122/ogbus-2019-2-128-142.

5. Sidorenko A. A., Sishchuk J. M., Gerasimova I. G. Underground mining of multiple coal seams: Problems and solutions. Eurasian Mining. 2016, no. 2, pp. 11—15. DOI: 10.17580/ em.2016.02.03.

6. Doklad o sostoyanii okhrany truda v Rossiyskoy Federatsii, Ministerstvo truda RF [Report on the state of labor protection in the Russian Federation, Ministry of Labor of the Russian Federation], 2019 available at: https://eisot.rosmintrud.ru/monitoring-uslovij-i-okhrany-truda. [In Russ].

7. SangWoo T., Calvert G. M. Hearing difficulty attributable to employment by industry and occupation: An analysis of the national health interview survey — United States. Journal of Occupational and Environmental Medicine. 2008, vol. 50, no. 1, pp. 46—56. DOI: 10.1097/ JOM.0b013e3181579316.

8. Liebenberg A., Brichta A., Nie V., Ahmadi S., James C. Hearing threshold levels of Australian coal mine workers: a retrospective cross-sectional study of 64196 audiograms. International Journal of Audiology. 2021, vol. 60, pp. 1—12. DOI: 10.1080/14992027.2021.1884908.

9. Kan S., Azman A. S. Evaluating hearing loss risks in the mining industry through MSHA citations. Journal of Occupational and Environmental Hygiene. 2018, vol. 15, no. 3, pp. 246— 262. DOI: 10.1080/15459624.2017.1412584.

10. Edwards A. L., Dekker J. J., Franz R. M., van Dyk T., Banyini A. Profiles of noise exposure levels in South African Mining. Journal of the Southern African Institute of Mining and Metallurgy. 2011, vol. 111, no. 5, pp. 315—322.

11. Chemezov E. N. Principles of ensuring the safety of mining operations in coal mining. Journal of Mining Institute. 2019, vol. 240, pp. 649—653. [In Russ]. DOI: 10.31897/PMI.2019.6.649.

12. Nikulin A. N., Dolzhikov I. S., Golod V. A., Stepanova L. V. Assessment of noise impact on coal mine workers including way to/from workplace. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, vol. 2020, no. 2, pp. 151—155. DOI 10.33271/nvngu/2021-2/151.

13. McDaid D., Park A., Chadha S. Estimating the global costs of hearing loss. International Journal of Audiology. 2021, vol. 60, pp. 1—9. DOI: 10.1080/14992027.2021.1883197.

14. Nikulin A., Ikonnikov D., Afanasev P. Application of individual mobile soundproof cabin at process operator working area. Journal of Engineering and Applied Science. 2020, vol. 23, pp. 333—340. DOI: 10.6180/jase.202006_23(2).0016.

15. Shuvalov Yu. V., Burlakov S. D., Tucha N. A. Assessment of the impact and protection of miners from the negative impact of the environment. Journal of Mining Institute. 2005, vol. 164, pp. 128—133. [In Russ].

16. Kharitonov V. I. Experimental study of the effectiveness of anti-noise for the prevention of intensive noise exposure. Rossiyskiy mediko-biologicheskiy vestnik imeni akademika I.P. Pavlova. 2018, vol. 26, no. 4, pp. 484—492. [In Russ]. DOI: 10.23888/PAVLOVJ2018264484-492.

17. Kovshov S., Istomin R., Sotiriu A. Industrial injuries appraisal in mines of JSC «SUEK Kuzbass». Advanced Materials Research. Trans Tech Publications, Switzerland. 2014, vol. 1001, pp. 414—420. DOI: 10.4028/www.scientific.net/AMR.1001.414.

18. Buravov A. D., Zima M., Kovarskaya E. Z., Moskovenko I. B. Developing recommendations on the use of an acoustic method for quality control of products based on periclase, including periclase-carbon products. Refractories and Industrial Ceramics. 2014, vol. 55, no. 1, pp. 77—80. DOI: 10.1007/s11148-014-9663-6.

19. Gotlib Y., Alimov N. About the role of personal hearing protection from harmful effects of industrial noise in special assessment of working condition. Safety in Technosphere. 2015, no. 2, pp. 40—47. DOI: 10.12737/11332.

20. Bauer E. R., Babich D. R., Vipperman J. R. Equipment noise and worker exposure in the coal mining industry. Pittsburgh: National Institute for Occupational Safety and Health (NIOSH), 2016. 85 p.

21. Ivanov M. V., Gavriliev S. A., Trofimov S. A., Ksenofontov B. S., Ivanova O. A. Investigation of hydroacoustic properties of materials. Vestnik MGTU im. N.E. Baumana. Seriya Mashinostroenie. 2018, no. 4 (121), pp. 71—83. [In Russ]. DOI: 10.18698/0236-3941-2018-471-83.

22. Tomozei C., Nedeff V., Lazar G. Actual stage of industrial noise reduction. Journal of Engineering Studies and Research. 2011, vol. 17, no. 4, pp. 89—96.

23. Tang X., Yan X. Acoustic energy absorption properties of fibrous materials. A review. Composites Part A: Applied Science and Manufacturing. 2017, vol. 101, pp. 360–380. DOI: 10.1016/j.compositesa.2017.07.002.

24. Jones P. Prediction of the acoustic performance of small poroelastic foam filled mufflers: a case study. Acoustics Australia. 2017, vol. 38, no. 2, pp. 69—75.

25. Pilinevich L. P., Tumilovich M. V., Kravtsov A. G., Rumyantsev D. M., Grib K. V. Influence of the particle size of the powder of porous materials on the reduction of the aerodynamic noise level. Doklady BGUIR. 2019, no. 7-8 (126), pp. 109—116. [In Russ].

26. Cao L., Fu Q., Si Y., Ding B., Yu J. Porous materials for sound absorption. Composites Communications. 2015, vol. 10, pp. 25–35. DOI: 10.1016/j.coco.2018.05.001.

27. Hua Q., Yang H. Effect of thickness, density and cavity depth on the sound absorption properties of wool boards. Autex Research Journal. 2017, vol. 18, pp. 203—209. DOI:10.1515/ aut-2017-0020.

28. Patnaik A. Materials used for acoustic textiles. Acoustic Textiles. Textile Science and Clothing Technology. 2017, pp. 73—92. DOI: 10.1007/978-981-10-1476-5_4.

29. Radoutsky V. Yu., Shulzhenko V. N., Stepanova M. N. Modern sound-absorbing materials and structures. Vestnik BGTU imeni V. G. Shuhova. 2016, no. 6, pp. 76—81. [In Russ].

30. Zhengqing L., Jiaxing Z., Mohammad F., John D. Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel. Applied Acoustics. 2017, vol. 121, pp. 25—32. DOI: 10.1016/j.apacoust.2017.01.032.

31. Nansha G., Baozhu C., Hong H., Zhang R. Mesophase pitch based carbon foams as sound absorbers. Materials Letters. 2017, vol. 212, pp. 1—13. DOI: 10.1016/j.matlet.2017.10.074.

32. Smirnyakova V. V., Skudarnov S. M. Analysis of labor conditions of coal industry workers. MIAB. Mining Inf. Anal. Bull. 2015, no. S7, pp. 425—430. [In Russ].

33. Parkhansky Yu. The risk of injuries of coalmine workers and its hysteresis. Journal of Mining Institute. 2016, vol. 222, pp. 869—876. [In Russ]. DOI: 10.18454/PMI.2016.6.869.

34. SP 51.13330.2011. Svod pravil. Zashchita ot shuma. Aktualizirovannaya redakciya SNiP 23-03-2003 [SP 51.13330.2011. A set of rules. Noise protection. Updated version of Construction norms and regulations SNiP 23-03-2003]. [In Russ].

35. Ivanov N. I. Inzhenernaya akustika. Teoriya i praktika bor'by s shumom [Engineering acoustics. Theory and practice of noise control], Moscow, Logos, 2008, 424 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.