Change in rock mass compaction parameters in cave-in zones in the long run

Mining-induced sinkholes are a threat to land infrastructure and economic activities. Many events of unexpected sinkholes on the ground over abandoned mines many years after the mine closure are known. For this reason, for any type of activity in the undermined territories, it is necessary to carefully assess the possible risks of the rock mass movement. This study considers the process of sinkhole formation during underground mining in strong rocks. The test object is Severopeschanskoe iron ore deposit. The research consists in the analysis of the volumes of underground excavations and sinkholes aged 5 to 50 years, and includes determination of the bulking factor determination of collapsed rocks. The change in the latter in time indicates possible completion of the cavity formation process in rock mass. The photogrammetric survey with unmanned aerial vehicles is used to determine the volumes of sinkholes. The observation results show the relationship between compaction indices of collapsed rock mass and the life time of the sinkhole. It is established that within several decades after the appearance of a sinkhole, the deformation rate in rock mass decreases significantly. The bulking factor of 1.12–1.14 indicates sufficient compaction of rocks and stabilization of the surface collapse volumes.

Keywords: rock movement, sinkhole, cave-in zone, undermined territories, collapse sink, collapsed rock bulking, photogrammetry, UAV.
For citation:

Efremov E. Yu., Konovalova Yu. P. Change in rock mass compaction parameters in cave-in zones in the long run . MIAB. Mining Inf. Anal. Bull. 2021;(5—2):53—63. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_53.

Acknowledgements:

The study is carried out within the framework of State Contract No. 07500581-19-00, Topic No. 0405-2019-007.

Issue number: 5
Year: 2021
Page number: 53-63
ISBN: 0236-1493
UDK: 622.834; 622.847
DOI: 10.25018/0236_1493_2021_52_0_53
Article receipt date: 15.12.2020
Date of review receipt: 12.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Efremov E. Yu.1, Researcher of Rock Movement Laboratory, efremov-eu@mail.ru;
Konovalova Yu. P.1, Senior Researcher of Rock Movement Laboratory, lisjul@mail.ru;
1 The Institute of Mining of the Ural branch of the Russian Academy of Sciences, Ekaterinburg, Russia.

 

For contacts:
Bibliography:

1. Vedernikov A. S., Zuev P. I. Zoning of undermined urban territories in the Berezosky town. MIAB. Mining Inf. Anal. Bull. 2020, no. 3—1, pp. 37—45. [In Russ]. DOI 10.25018/0236—1493—2020—31—0-37—45.

2. Usanov S. V. Undermined areas in Berezovsky town and assessment of their usе. MIAB. Mining Inf. Anal. Bull. 2010, no. 10, pp. 349—352. [In Russ].

3. Chistyakov E. P., Fedorenko A. I., Chistyakov D. E., Moshinskij V. I. Mining and geomechanical aspects of rock movement at mining enterprises of Krivbass. Gornyj vestnik. 2013, Vol. 1, no. 1(96), pp. 109—112. [In Russ].

4. Feofanov A. N. The problem of abandoned mine and ways to solve it. Nauchnye trudy Doneckogo nacional’nogo tekhnicheskogo universiteta. Seriya: Problemy ekologii. 2007, no. 1—2, pp. 104—115. [In Russ].

5. Longoni L., Papini M., Brambilla D., Arosio D., Zanzi L. The risk of collapse in abandoned mine sites: the issue of data uncertainty. Open Geosciences, 2016, Vol. 8, Iss. 1, pp. 246—258. DOI 10.1515/geo-2016—0022.

6. Al Heib, M., Duval, C., Theoleyre, F. et al. Analysis of the historical collapse of an abandoned underground chalk mine in 1961 in Clamart (Paris, France). Bulletin of Engineering Geology and the Environment, 2015, Vol.74, pp.1001—1018. DOI 10.1007/ s10064—014—0677—6.

7. Strozik G., Jendrus R., Manowska A., Popczyk M. Mine subsidence as a post-mining effect in the Upper Silesia coal basin. Polish Journal of Environmental Studies, 2016, Vol. 25, no 2, pp. 777—785. DOI 10.15244/pjoes/61117.

8. Sainsbury D. P., Sainsbury B. L., Lorig L. J. Investigation of caving induced subsidence at the abandoned Grace Mine. Mining Technology, 2010, Vol. 119, no 3, pp. 151—161. DOI 10.1179/174328610X12820409992336.

9. Harisova O. D., Harisov T. F. Analysis of long-term instrumental observations and prediction of emergency events at the Saranovskoye field. Problemy nedropol’zovaniya. 2020, no. 2(25), pp. 134—143. [In Russ]. DOI 10.25635/2313—1586.2020.02.134.

10. Dalatkazin T. Sh., Konovalova Yu. P. Consequences forecast of the Berezovsky mine flooding. Problemy nedropol’zovaniya. 2017, no. 3(14), pp. 60—66. [In Russ].

11. Belodedov A. A., Dolzhikov P. N., Legostaev S. O. Analyzing mechanism of forming eearth surface deformations over liquidated mines mining working. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle. 2017, no. 1, pp. 160—169. [In Russ].

12. Kozhogulov K. Ch., Tazhibaev K. T., Abdibaitov Sh. A. Analysis of impact of mine systems on rock movement and formation of earth surface cavity. Nauka i novye tekhnologii. 2008, no. 7—8, pp. 24—26. [In Russ].

13. Abdibaitov Sh. A., Isaev B. A., Abdiev A. R. Influence of physical and mechanical properties and rock structural disturbances on the process of formation of earth surface cavities. Vestnik Kyrgyzsko-Rossijskogo Slavyanskogo universiteta. 2017, Vol. 17, no. 8, pp. 140—143. [In Russ]

14. Zelencov S. N., Kutepov Yu. Yu., Borger E. B. Investigation of surface cavities and mechanism of their formation on undermined Earth surface of the mine named after Ruban. MIAB. Mining Inf. Anal. Bull. 2017, no. 5, pp. 271—280. [In Russ].

15. Dolzhikov P. N., Prokopova M. V., Hamidullina N. V. Field investigations of dips above closed mines. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no. 4, pp. 3—11. [In Russ].

16. Lobanova T. V. Features of the Earth’s surface collapse over mined-out space of blind ore bodies in south-eastern site of the Tashtagol deposit. Fundamental’nye i prikladnye voprosy gornyh nauk. 2019, Vol. 6, no. 1, pp. 169—175. [In Russ]. DOI 10.15372/ FPVGN2019060129.

17. Hui, X., Ma, F., Zhao, H. et al. Monitoring and statistical analysis of mine subsidence at three metal mines in China. Bulletin of Engineering Geology and the Environment, 2019, Vol.78,pp.3983—4001. DOI 10.1007/s10064—018—1367—6.

18. Xia, K., Chen, C., Yang, K. et al. A case study on the characteristics of footwall ground deformation and movement and their mechanisms. Natural Hazards, 2020, Vol.104, pp.1039—1077. DOI 10.1007/s11069—020—04204—4.

19. Cui, X., Gao, Y. & Yuan, D. Sudden surface collapse disasters caused by shallow partial mining in Datong coalfield, China. Natural Hazards, 2014, Vol.74, pp.911—929. DOI 10.1007/s11069—014—1221—5.

20. Szwedzicki T. Geotechnical precursors to large-scale ground collapse in mines. International Journal of Rock Mechanics and Mining Sciences. 2001. V.38. no. 7. P. 957— 965.

21. Slavikovskij O. V., Slavikovskaya Yu. O. Ecological and social aspects of technicalrecultivation of technogenous cavities of the Earth’s interior. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2008, no. 8, pp. 71—76. [In Russ].

22. Kolchina M. E., Konovalov V. E., Kolchina N. V. Safety and organization issues of rational use of lands of industrial cities in areas of underground mine workings influence. Izvestiya Ural’skogo gosudarstvennogo gornogo universiteta. 2017, no. 1(45), pp. 37—43. [In Russ]. DOI 10.21440/2307—2091—2017—1-37—43.

23. Marschalko, M., Yilmaz, I., Kubečka, K. et al. Utilization of an underground mining evaluation map incorporating the effect of landslides and surface flooding for land-use purpose. Bulletin of Engineering Geology and the Environment, 2014, Vol. 73, pp.1117— 1126. DOI 10.1007/s10064—014—0634—4.

24. Pravila ohrany sooruzhenij i prirodnyh ob”ektov ot vrednogo vliyaniya podzemnyh razrabotok na mestorozhdeniyah rudnyh metallov Urala i Kazahstana: utverzhdeny Minmetom SSSR 02.08.1990 g.; soglasovany Gospromatomnadzorom SSSR ot 21.06.1990. no. 4 [Rules for structures and natural objects protection from the dangerous influence of underground developments at ore metal deposits in the Urals and Kazakhstan], Sverdlovsk, 1990. [In Russ].

25. Federal’nye normy i pravila v oblasti promyshlennoj bezopasnosti “Pravila bezopasnosti pri vedenii gornyh rabot i pererabotke tverdyh poleznyh iskopaemyh”: utverzhdeny Federal’noj sluzhboj po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru RF 11 dekabrya 2013 g. [Safety Rules for Mining and Processing of Solid Minerals], Moscow, 2013. [In Russ].

26. Efremov E. Yu. Rationale of cave-in process consummation criterion. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no. 4, pp.12—22. [In Russ].

27. Efremov E. Yu. Dorohov D. V. Determination of the surface collapse  process phase caused by block caving mining. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2020, Vol. 331, no. 4, pp.170 178. [In Russ]. DOI 10.18799/24131830/2020/4/2604.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.