Stimulation of in situ uranium leaching from low permeable ore in treatment by different physical methods

The resources of in situ leach uranium mining mostly represent hydrogenous lowgrade ore deposits in impermeable sandy and clayey sediments in the crustal depression zones. It is possible to involve low permeable ore in the mining and processing cycle chiefly by means of the in situ leaching stimulation using various physical and chemical methods aimed to enhance permeability of ore bodies for leaching solutions. This article describes the lab-scale experiments and full scale studies on stimulation of in situ leaching in low permeable uranium ore deposits of NavoiUran. The studies aim to increase efficiency of in situ uranium leaching using such physical methods as ore treatment by alternating current, magnetic processing of acid solutions and application of ultrasonic vibrations. The lab-scale experiments show that alternating current stimulation raises both the permeation factor and the metal recovery rate. For example, the passage of alternating current at a density of 0.1–0.01 mA/cm2 increases the permeability factor by 1.2 times. The full scale studies prove this result and exhibit the increased output of wet holes by 5 times on average. The capability testing of magnetic processing of acid solutions in the in situ leach technology included estimation of leaching velocity of magnetic solutions, observation of change in permeability of rocks with the magnetic solutions and determination of precipitation rates of mechanical impurities and gypsum in the magnetic solutions. The labscale experiments find that magnetization of acid solutions promotes precipitation of gypsum and mechanical impurities, which may be practically useful in purification of process solutions. The lab-scale investigation of ultrasonic vibration effect on leaching performance shows that both the leaching velocity and the metal concentration in solutions increase noteworthily.

Keywords: in situ leaching, low permeable uranium ore, electric current, electro-osmosis, electrophoresis, electromagnetic field, permeation and leaching, rock permeability.
For citation:

Alikulov Sh.Sh., Ibragimov R. R., Khamidov R. A. Stimulation of in situ uranium leaching from low permeable ore in treatment by different physical methods. MIAB. Mining Inf. Anal. Bull. 2023;(2):111-126. [In Russ]. DOI: 10.25018/0236_1493_2023_2_0_111.

Issue number: 2
Year: 2023
Page number: 111-126
ISBN: 0236-1493
UDK: 622.277
DOI: 10.25018/0236_1493_2023_2_0_111
Article receipt date: 21.07.2022
Date of review receipt: 19.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.01.2023
About authors:

Sh.Sh. Alikulov1, Dr. Sci. (Eng.), Assistant Professor, Vice-rector, e-mail:, ORCID ID: 0000-0003-0142-1125,
R.R. Ibragimov, Assistant of Chair, Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia, e-mail:, ORCID ID: 0000-0003-0815-7267,
R.A. Khamidov1, PhD, Assistant Professor, e-mail:, ORCID ID: 0000-0001-8998-6571,
1 Navoi State University of Mining and Technology, 210100, Navoi, Republic of Uzbekistan.


For contacts:

Sh.Sh. Alikulov, e-mail:


1. Lyashenko V. I., Khomenko O. E., Andreev B. N., Golik V. I. Justification of drill and blast pattern designs for ore treatment before in-situ leaching. MIAB. Mining Inf. Anal. Bull. 2021, no. 3, pp. 58—71. [In Russ]. DOI: 10.25018/0236-1493-2021-3-0-58-71.

2. Golik V. I., Razorenov Yu. I., Lyashenko V. I. Features of designing systems of underground leaching of metals. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya. 2018, vol. 19, no. 1, pp. 80—91. [In Russ]. DOI: 10.22363/2312-8143-2018-19-1

3. Golik V. I., Zaalishvili V. B., Razorenov Yu. I. Experience of uranium extraction by leaching. MIAB. Mining Inf. Anal. Bull. 2014, no. 7, pp. 98—103. [In Russ].

4. Hoummady E., Golfier F., Cathelineau M., Neto J., Lefevre E. A study of uranium-ore agglomeration parameters and their implications during heap leaching. Minerals Engineering. 2018, vol. 127, pp. 22—31.

5. Yusupov Kh. A., Aliev S. B., Dzhakupov D. A., Elzhanov E. A. Application of ammonium bifluoride for chemical treatment of wells in underground uranium leaching. Gornyi Zhurnal. 2017, no. 4, pp. 57—60. [In Russ]. DOI: 10.17580/gzh.2017.04.11.

6. Collet A., Regnault O., Ozhogin A., Imantayeva A., Garnier L. Three-dimensional reactive transport simulation of Uranium in situ recovery: Large-scale well field applications in Shu Saryssu Bassin, Tortkuduk deposit (Kazakhstan). Hydrometallurgy. 2022, vol. 211, article 105873. DOI: 10.1016/j.hydromet.2022.105873.

7. Panfilov M., Uralbekov B., Burkitbayev M. Reactive transport in the underground leaching of uranium: Asymptotic analytical solution for multi-reaction model. Hydrometallurgy. 2016, vol. 160, pp. 60—72. DOI: 10.1016/j.hydromet.2015.11.012.

8. Sinclair L., Thompson J. In situ leaching of copper: Challenges and future prospects. Hydrometallurgy. 2015, vol. 157, pp. 306—324. DOI: 10.1016/j.hydromet.2015.08.022.

9. Bhargava S. K., Ram R., Pownceby M., Grocott S. Ring B., Tardio J., Review L. J. A review of acid leaching of uraninite. Hydrometallurgy. 2014, vol. 151, pp. 10—24. DOI: 10.1016/j. hydromet.2014.10.015.

10. Laurent G., Izart C., Lechenard B., Golfier F., Marion P., Collon P., Truche L., Royer J. J., Filippov L. Numerical modelling of column experiments to investigate in-situ bioleaching as an alternative mining technology. Hydrometallurgy. 2019, vol. 188, pp. 272—290. DOI: 10.1016/j. hydromet.2019.07.002.

11. Zammit C. M., Brugger J., Southam G., Reith F. In situ recovery of uranium — The microbial influence. Hydrometallurgy. 2014, vol. 150. DOI: 10.1016/j.hydromet.2014.06.003.

12. Rakishev B. R., Yazikov E. G., Mataev M. M., Kenzhetaev Z. S. Studies of uranium leaching from core sample in tubes using an oxidizer. Gornyi Zhurnal. 2021, no. 9, pp. 84—89. [In Russ]. DOI: 10.17580/gzh.2021.09.14.

13. Chen J., Zhao Y., Song Q., Zhou Z., Yang S. Exploration and mining evaluation system and price prediction of uranium resources. Mining of Mineral Deposits. 2018, vol. 12, no. 1, pp. 85—94. DOI: 10.15407/mining12.01.085.

14. Alikulov Sh. Sh., Nakhimov F. F. Analysis of the basic model of underground leaching of uranium to the natural conditions of the deposit. MIAB. Mining Inf. Anal. Bull. 2015, no. 1, pp. 98—104. [In Russ].

15. Lisovsky G. D., Lobanov D. P., Nazarkin V. P., etc. Podzemnoe i kuchnoe vyshchelachivanie metallov [Underground and heap leaching of metals], Moscow, Nedra, 198, 113 p.

16. Rakishev B. R., Matayev M. M., Kenzhetayev Z. S., Shampikova A. H., Toktaruly B. Innovative methods for intensifying borehole production of uranium in ores with low filtration characteristics. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2020, vol. 6, no. 444, pp. 213—219. DOI: 10.32014/2020.2518-170X.149.

17. Alikulov Sh. Sh. Intensification of technological processes of underground leaching of uranium from weakly permeable ores. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2017, no. 1, pp. 78—81. [In Russ].

18. Alikulov Sh. Sh., Kurbanov M. A., Sharafutdinov U. Z., Khalimov I. U. Investigation of hydrodynamic parameters during underground leaching by physical modeling. Gorniy vestnik Uzbekistana. 2019, no. 1, pp. 77—82. [In Russ].

19. Alikulov Sh. Sh., Akhadov Kh. R. Separate borehole uranium leaching technology based on geophysical exploration: A case-study of mines of Navoi Mining and Metallurgical Combinat. MIAB. Mining Inf. Anal. Bull. 2021, no. 12, pp. 120—131. [In Russ]. DOI: 10.25018/0236_14 93_2021_12_0_120.

20. Sharafutdinov U. Z., Karimov I. A., Alikulov Sh. Sh. Applying the Fe+3 oxidizer as an improvement in the efficiency of uranium extraction. Turkish Journal of Computer and Mathematics Education. 2021, vol. 12, no. 7, pp. 384—386. DOI: 10.17762/turcomat.v12i7.2592.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.