Research of the MSL-14K mill applicability to determine the Bond ball mill work index

The article discusses the study of the possibility of applying non-standard mill MSL14K for the Bond ball mill test. As a result of ore grinding experiments, the Bond ball mill work index was determined by the adapted methodology for the ball mill MSL-14K. A modified equation has been proposed to calculate the Bond Ball Grinding Index (BWI), that considers the ratio of the MSL-14K mill net grinding power to the net grinding power of Bond ball mill. It was shown that the net grinding power in the Bond ball mill under standard conditions is 144,5 W, the MSL-14K mill under specified conditions is 81,5 W. Four types of ores of different mineral composition (oxidized ferruginous quartzites, gold-sulfide, sulfide copper-nickel and sulfide copper types) were tested using the standard Bond ball mill and MSL-14K mill. As a result, the indexes of the investigated ores were determined with the relative error not exceeding 4,5%, that shows the MSL-14K mill applicability to determine the Bond ball mill work index. Compared to methods for determining the working index of Bond ball mills that allow the use of mills other than Bond mills, the resulting approach has shown the best results and can be recommended as a replacement for these methods.

Keywords: Bond method, Bond ball mill work index, physical and mechanical properties of ores, comminution circuit, grindability, ball grinding, comminution, Bond ball mill, MSL-14K mill, modified BWI equation.
For citation:

Lvov V. V., Chitalov L. S., Struk G. V., Rakov A. V. Research of the MSL-14K mill applicability to determine the Bond ball mill work index. MIAB. Mining Inf. Anal. Bull. 2022;(6— 1):290—303. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_290.

Acknowledgements:

The study was carried out with the help of the grant for the state assignment in the field of scientific activity for the year 2021 №FSRW-2020-0014.

Issue number: 6
Year: 2022
Page number: 290-303
ISBN: 0236-1493
UDK: 622.734
DOI: 10.25018/0236_1493_2022_61_0_290
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Lvov V. V.1, Cand. Sci. (Eng.), Assistant Professor, http://orcid.org/0000–0003–4081–6656, Saint Petersburg Mining University, 199106, Saint Petersburg, 2, 21st Line, Russia, e-mail: Lvov_VV@pers.spmi.ru
Chitalov L. S., Cand. Sci. (Eng.), Structural Analyst, Joint-Stock Company of the CADFEM CIS, building 2, 15, Kondratievsky prosp., Russia, e-mail: leonid.chitalov@cadfem-cis.ru;
Struk G. V.1, Stud. (Eng.), Saint Petersburg Mining University, 199106, Saint Petersburg, 2, 21st Line, Russia, e-mail: s180680@stud.spmi.ru
Rakov A. V.1, Stud. (Eng.), e-mail: s181684@stud.spmi.ru;
1 Saint Petersburg Mining University, 199106, Saint Petersburg, 2, 21st Line, Russia.

 

For contacts:

Lvov V. V., e-mail: Lvov_VV@pers.spmi.ru.

Bibliography:

1. Gurev А. А. Sustainable development of crude ore resources and benefication facilities of Apatit JSC based on best engineering solutions. Journal of Mining Institute. 2017, vol. 228, pp. 662–673. DOI: 10.25515/PMI.2017.6.662.

2. Petrov G. V., Shneerson Y. M., Andreev Y. V. Extraction of platinum metals during procssing of chromium ores from dunnite deposits. Journal of Mining Institute. 2018, vol. 231, pp. 281–286. DOI: 10.25515/PMI.2018.3.281.

3. Cheban A. Y. Engineering of Complex Structure Apatite Deposits and ExcavatingSorting Equipment for Its Implementation. Journal of Mining Institute. 2019, vol. 238, pp. 399–404. DOI: 10.31897/PMI.2019.4.399.

4. Nikolaeva N. V., Aleksandrova T. N., Chanturiya E. L., Afanasova A. Mineral and technological features of magnetite-hematite ores and their influence on the choice of processing technology. ACS Omega. 2021, vol. 6, no. 13, pp. 9077–9085. DOI: 10.1021/ acsomega.1c00129.

5. Talovina I. V., Lieberwirth H., Alexandrova T. N., Heide G. Supergene oxide-silicate nickel deposits: Mineral-geochemical composition and peculiarities of processing. Eurasian Mining. 2017, no. 1, pp. 21–24. DOI: 10.17580/em.2017.01.06.

6. Aleksandrova T., Nikolaeva N., Afanasova A., Romashev A., Kuznetsov V. Selective Disintegration Justification Based on the Mineralogical and Technological Features of the Polymetallic Ores. Minerals. 2021, vol. 11, no. 8, 15 p. DOI: 10.3390/min11080851.

7. Aleksandrova T. N., Afanasova A. V., Kuznetsov V. V., Babenko T. A. Process analysis of selective disintegration of Zapolyarny copper–nickel ore. MIAB. Mining Inf. Anal. Bull. 2021;(12):73–87. [In Russ]. DOI: 10.25018/0236_1493_2021_12_0_73.

8. Zhukov V. P., Osipov D. A., Mizonov V. E., Urbaniak D. Method for determining generalized energy grindability index of particulate solids. Izvestiya vysshikh uchebnykh zavedenii. Khimiya khimicheskaya tekhnologiya. 2019, vol. 62, no. 4, pp. 135–142. [In Russ]. DOI: 10.6060/ivkkt201962fp.5879.

9. Aleksandrova T. N., Orlova A. V., Taranov V. A. Current Status of Copper-Ore Processing: A Review. Russian Journal of Non-Ferrous Metals. 2021, vol. 62, no. 4, pp. 375–381. DOI: 10.3103/S1067821221040027.

10. Andreeva L. I. Assessment of efficiency improvement potentiality in ore pretreatment at Kovdor Mining and Processing Plant. MIAB. Mining Inf. Anal. Bull. 2019;(1):185–192. [In Russ]. DOI: 10.25018/0236–1493–2019–01–0–185–192.

11. Nikolaeva N., Romashev A., Aleksandrova T. Degree evaluation of grinding on fractional composition at destruction of polymineral raw materials. IMPC 2018–29th International Mineral Processing Congress. 2019, pp. 474–480.

12. Nikolaeva N., Aleksandrova T., Romashev A. Effect of grinding on the fractional composition of polymineral laminated bituminous shales. Mineral Processing and Extractive Metallurgy Review. 2017, vol. 39, no. 4, pp. 231–234. DOI: 11.1080/08827508.2017.1415207.

13. Nikolaeva N. V., Aleksandrova T. N., Taranov V. A. Determination of the degree of impact destruction of gold-bearing ore particles in the layer. Information. 2017, vol. 20, no. 9, pp. 6605–6613.

14. Gzogyan T. N., Gzogyan S. R. Comparative analysis of volumetric compression test data of unoxidized ferruginous quartzite. MIAB. Mining Inf. Anal. Bull. 2022;(4):43–55. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_43.

15. Hanumanthapp. H., Vardhan H., Mandela G. R., Kaza M., Sah R., Shanmugam B. K. Estimation of Grinding Time for Desired Particle Size Distribution and for Hematite Liberation Based on Ore Retention Time in the Mill. Mining, Metallurgy & Exploration. 2020, vol. 37, no. 2, pp. 481–492. DOI: 10.1007/s42461–019–00167–8.

16. Bond F. C. Crushing and grinding calculations. Allis-Chalmers: Allis-Chalmers press. 1961, 16 p.

17. Morrell S., Daniel M., Burke J. Morrell method for determining comminution circuit specific energy and assessing energy utilization efficiency of existing circuits. GMG–Global Mining Guidelines Group, available at: https//gmggroup.org/wp-content/uploads/2016/08/ Guidelines_-Morrell-REV-2018.pdf (accessed 15.11.2021).

18. Morrell S. Modelling the influence on power draw of the slurry phase in Autogenous (AG), Semi-autogenous (SAG) and ball mills. Minerals Engeneering. 2016, vol. 89, pp. 148– 156.

19. Starkey J., Moussaid H., Boucher D., Bobicki E. R. Keys to best practice comminution. Minerals Engineering. 2022, vol. 180, article 107432. DOI: 10.1016/j.mineng.2022.107432.

20. Deniz V., Ozdag H. A new approach to Bond grindability and work index: dynamic elastic parameters. Minerals Engineering. 2003, vol. 16, no. 3, pp. 211–217. DOI: 10.1016/ S0892–6875(02)00318–7.

21. Chitalov L. S., Lvov V. V. Comparative assessment of the bond ball mill work index tests. MIAB. Mining Inf. Anal. Bull. 2021;(1):130–145. [In Russ]. DOI: 10.25018/0236– 1493–2021–1–0–130–145.

22. Chitalov L. S. Development of a comprehensive method for assessing the efficiency of milling processes of sulfide copper-nickel ores. Abstract of Ph. D. thesis, Saint-Petersburg, Saint Petersburg Mining University, 2021, 24 p. [In Russ].

23. Berry T. F., Bruce R. W. A simple method of determining the grindability of ores. Canadian Mining Journal. 1966, vol. 87, pp. 63–65.

24. Nikolic V., Garcia G. G., Coello-Velazquez A. L., Menendez-Aguado A. M., Trumic M., Trumic M. S. A Review of Alternative Procedures to the Bond Ball Mill Standard Grindability Test. Metals. 2021, vol. 11, no. 7, pp. 1–16.

25. Horst W. E., Bassarear J. H. Use of simplified ore grindability technique to evaluate plant performance. Trans. SME/AIME. 1976, vol. 260, pp. 348–351.

26. Yap R., Sepuvelda J., Jauregui R. Determination of the Bond work index using an ordinary laboratory batch ball mill. Design and Installation of Comminution Circuits. 1982, pp. 176–203.

27. Kapur P. C. Analysis of the Bond grindability test. Institution of Mining & Metallurgy. 1970, vol. 79, no. 763, pp. 103–107.

28. Karra V. K. Simulation of Bond grindability tests. CIM Bull. 1981, vol. 74, pp. 195–199.

29. Smith R., Lee K. A comparison of data from Bond type simulated closed circuit and batch type grindability tests. American Institute of Mining and Metallurgical Engineers. 1968, vol. 241, pp. 91–99.

30. Ahmadi R., Shahsavari Sh. Procedure for determination of ball Bond work index in the commercial operations. Minerals Engineering. 2009, vol. 22, pp. 104–106.

31. Gharehgheshlagh H. H. Kinetic grinding test approach to estimate the Ball mill Work index. Physicochemical Problems of Mineral Processing. 2016, vol. 52, no. 1, pp. 342–352.

32. Lewis K. A., Pearl M., Tucker P. Computer simulation of the Bond grindability test. Minerals Engineering. 1990, vol. 3, pp. 199–206.

33. Armstrong D. An alternative grindability test. An improvement of the Bond procedure. International Journal of Mineral Processing. 1986, vol. 16, pp. 195–208.

34. Aras A., Ozkan A., Aydogan S. Correlations of Bond and Breakage Parameters of Some Ores with the Corresponding Point Load Index. Particle and Particle Systems Characterization. 2012, vol. 29, no. 3, pp. 204–210. DOI: 10.1002/ppsc.201100019.

35. Celisa C., Antonioua A., Cuisanoa J., Pillihuamanb A., Maza D. Experimental characterization of chalcopyrite ball mill grinding processes in batch and continuous flow processing modes to reduce energy consumption. Journal of Materials Research and Technology. 2021, vol. 15, pp. 5428–5444. DOI: 10.1016/j.jmrt.2021.10.136.

36. Skarin O. I., Tikhonov N. O. Calculation of the required semiautogenous mill power based on the Bond Work indexes. Eurasian mining. 2015, no. 1, pp. 5–8.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.