Bibliography: 1. Trupak N. G. Zamorazhivanie gruntov v podzemnom stroitel'stve [Ground freezing in underground construction], Moscow, Nedra, 1974.
2. Vakulenko I. S., Nikolaev P. V. Artificial ground freezing in underground construction: Analysis and development prospects. MIAB. Mining Inf. Anal. Bull. 2015, no. 3, pp. 338—346. [In Russ].
3. Shuplik M. N. Special methods in underground construction. MIAB. Mining Inf. Anal. Bull. 2013, no. 1, pp. 595—625. [In Russ].
4. Vyalov S. S. Prochnost' i polzuchest' merzlyh gruntov i raschety ledogruntovyh ograzhdeniy [Frozen soil strength and creep, and frozen wall design], Moscow, Izd-vo Akademii nauk SSSR, 1962, 253 p.
5. Levin L.Yu., Semin M. A., Plekhov O. A. Comparative analysis of existing calculation methods for frozen wall thickness in mine shafts under construction. PNRPU Construction and Architecture Bulletin. 2018, vol. 9, no. 4, pp. 93—103. [In Russ]. DOI: 10.15593/22249826/2018.4.09
6. Kim Y. S., Kang J.-M., Lee J., Hong S.-S., Kim K.-J. Finite element modeling and analysis for artificial ground freezing in egress shafts. KSCE Journal of Civil Engineering. 2012, vol. 16, no. 6, pp. 925–932.
7. Yang W.-H., Du Z.-B., Yang Z.-J., Bo D.-L. Plastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock. Chinese Journal of Geotechnical Engineering. 2013, vol. 35, no. 10. Pp. 1857–1862.
8. Zhang B., Yang W., Wang B. Plastic design theory of frozen wall thickness in an ultradeep soil layer considering large deformation characteristics. Mathematical Problems in Engineering. 2018, vol. 2018, article 8513413.
9. Wang Y. S., Yang Z., Yang W. Viscoelastic analysis of interaction between freezing wall and outer shaft wall in freeze sinking. The 6th International Conference on Mining Science & Technology. 2009, pp. 612—620.
10. Sanger F. J., Sayles F. H. Thermal and rheological computations for artificially frozen ground construction. Engineering Geology. 1979, vol. 13, pp. 311—337. DOI: 10.1016/00137952(79)90040-1.
11. Kostina A., Zhelnin M., Plekhov O., Panteleev I., Levin L., Semin M. An applicability of Vyalov’s equations to ice wall strength estimation. Frattura ed Integrità Strutturale. 2020, vol. 14, no. 53, pp. 394—405.
12. Zhelnin M., Kostina A., Plekhov O., Panteleev I., Levin L. Numerical analysis of application limits of Vyalov’s formula for an ice-soil thickness. Frattura ed Integrità Strutturale. 2019, vol. 13, no. 49, pp. 156—166.
13. Tsytovich N. A. Mekhanika merzlyh gruntov: uchebnoe posobie [Frozen soil mechanics: Educational aid], Moscow, Vysshaya shkola, 1973, 448 p.
14. Semin M. A., Bogomyagkov A. V., Levin L. Y. Theoretical analysis of frozen wall dynamics in transition to passive freezing regime. Journal of Mining Institute. 2020, vol. 243, pp. 319—328. [In Russ].
15. Levin L., Golovatyi I., Zaitsev A., Pugin A., Semin M. Thermal monitoring of frozen wall thawing after artificial ground freezing: Case study of Petrikov Potash Mine. Tunnelling and Underground Space Technology. 2021, vol. 107, article 103685.
16. Mellor M. Mechanical properties of rocks at low temperatures. 2nd International Conference on Permafrost. Yakutsk, International Permafrost Association. 1973, pp. 334—344.
17. Goughnour R. R., Andersland O. B. Mechanical properties of a sand-ice system. Journal of the Soil Mechanics and Foundations Division. 1968, vol. 94, no. 4, pp. 923—950.
18. Sayles F. H., Carbee D. L. Strength of frozen silt as a function of ice content and dry unit weight. Engineering Geology. 1981, vol. 18, no. 1—4, pp. 55—66.
19. Ting J. M., Torrence M. R., Ladd C. C. Mechanisms of strength for frozen sand. Journal of Geotechnical Engineering. 1983, vol. 109, no. 10, pp. 1286—1302.
20. Khakimov H. R. Voprosy teorii i praktiki iskusstvennogo zamorazhivaniya gruntov [Artificial ground freezing: Theory and practice], Moscow, Izd-vo Akademii nauk SSSR, 1957, 191 p.