Investigation of the water hardness ions impact on the copper-nickel ores flotation probability

The relevance of the work is due to the need in increasing of the flotation performance accuracy forecasting to establish the influence of various factors on the process performance. The work investigated the influence of water hardness ions on the flotation probability. Estimation of the flotation probability was conducted on the basis of the floatability distribution analysis. The peculiarity of application of the given approach in work was assignment to floatability parameters values of probability of flotation of mineral particles in defined fraction. Process samples of sulphide copper-nickel ores were the object of the study. Based on the flotation kinetics results the mathematical dependences of copper, nickel and silicon cumulative recoveries in the concentrate were established and the values of flotation rate constants for flotability classes were determined. Analysis of the obtained results showed that the presence of calcium ions in the pulp decreases the maximum possible cumulative recovery of copper, nickel in the concentrate with increasing mass fraction of their non-flotable fraction in the concentrate. The highest values of contents of fast flotation fractions of copper and nickel are reached at concentration of calcium ions in pulp 27,52 mg/l. In addition in the course of flotation the height of froth layer was measured. It was found that with the increase of water hardness the value of maximum height of froth layer decreases. Decrease of probability of flotation of ore minerals is caused by decrease of foam layer stability with increase of pulp hardness.

Keywords: flotation kinetics, copper-nickel ores, flotability, fast flotation fraction, medium flotation fraction, slow flotation fraction, non-flotation fraction, flotation models, froth layer height, water hardness.
For citation:

Aleksandrova T. N., Kuznetsov V. V., Ivanov E. A. Investigation of the water hardness ions impact on the copper-nickel ores flotation probability. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):263—278. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_263.

Acknowledgements:

This work was supported by the Russian Science Foundation (project no. 19—17—00096).

Issue number: 6
Year: 2022
Page number: 263-278
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2022_61_0_263
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Aleksandrova T. N., Dr. Sci. (Eng.), Head of the minerals processing department, http:// orcid.org/ 0000-0002-3069-0001, Saint Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia, e-mail: Aleksandrova_TN@pers.spmi.ru; Kuznetsov V. V., postgraduate student of the minerals processing department, https://orcid. org/ 0000-0001-6159-316X, Saint Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia, e-mail: s205058@stud.spmi.ru;
Ivanov E. A., student of the minerals processing department, Saint Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia, e-mail: s161011@ stud.spmi.ru.

 

For contacts:

Kuznetsov V. V., e-mail: valentinvadimovichkuznetsov@gmail.com.

Bibliography:

1. Litvinenko V. S., Sergeev I. B. Innovations as a Factor in the Development of the Natural Resources Sector. Studies on Russian Economic Development, 2019, vol. 30, no. 6, pp. 637—645. [In Russ]. DOI: 10.1134/S107570071906011X.

2. Cherepovitsyn A. E., Lipina S. A., Evseeva O. O. Innovative approach to the development of mineral and raw material potential of the Arctic zone of the Russian Federation. Proceedings of the Mining Institute, 2018, vol. 232, pp.438—444. [In Russ]. DOI: 10.31897/pmi.2018.4.438.

3. Litvinenko V. S., Sergeev I. B. Innovative development of the mineral resource sector. Problems of Forecasting, 2019, vol. 6, no. 177, pp. 60—72. [In Russ].

4. Chanturiya V. A. Kozlov A. P. Modern problems of complex processing of hard-toenrich ores and technogenic raw materials. “Plaksin readings 2017”: international. scientific. conf. (Krasnoyarsk, September 12—15, 2017). Krasnoyarsk: Siberian Federal University, 2017, pp. 3—6, [In Russ].

5. Chanturiya V. A., Weisberg L. A., Kozlov A. P. Priority research areas in mineral processing, Obogashenie rud, 2014, no. 2, pp. 3—9, [In Russ], DOI: 10.17580/or.2014.02.01.

6. Aleksandrova T. N., Talovina I. V., Duryagina A. M. Gold-sulphide deposits of the Russian Arctic zone: Mineralogical features and prospects of ore benefication. Chemie der Erde, 2020, vol. 3, no. 80, pp. 22—35. DOI: 10.1016/j.chemer.2019.04.006.

7. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. Study of enrichment of sulphide and oxidized ores from gold deposits of Aldan Shield. Journal of Mining Institute, 2020, vol. 242, pp. 218—227. [In Russ]. DOI: 10.31897/pmi.2020.2.218.

8. Tereshchenko S. V., Pavlishina D. N., Alexeeva S. A., Rakaev A. I. Use of preconcentration methods to improve the quality indicators of ores. Proceedings of the Fersman scientific session of the Institute of the KSC RAS, 2017, no. 14, pp. 328—330. [In Russ].

9. Ovchinnikova T. Yu., Elizarov D. B., Efremova T. A., Koltunov A. V. Features of preliminary concentration of multicomponent ores. Scientific basis and practice of processing of ores and technogenic raw materials: Proceedings of XXI International Scientific and Technical Conference held as part of the Urals mining decade, Yekaterinburg, 06—07 April 2016. Yekaterinburg: Fort Dialog-Iset Publishing House, 2016, pp. 268—272. [In Russ].

10. Elbendari A. M., Alexandrova T. N., Nikolaeva N. V. Optimization of the reagent regime in the enrichment of apatite-nepheline ores. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 123—132. [In Russ]. DOI: 10.25018/0236-1493-2020-10—0-123—132.

11. Ignatkina V. A. Selective reagent regimes of flotation of non-ferrous and noble metal sulfides from refractory sulfide ores. Precious Metals, 2016, no. 11, pp. 27—33. [In Russ]. DOI: 10.25018/0236-1493-2020-10—0-123—132.

12. Islamov S., Grigoriev A., Beloglazov I. Research risk factors in monitoring well drilling-a case study using machine learning methods. Symmetry, 2021, vol. 13, no. 7, pp. 1—19. [In Russ]. DOI: 10.3390/sym13071293.

13. Savchenkov, S. A., Bazhin V. Y., Vilenskaya A. V. Training of specialists in the field of intellectual property protection and invention at universities for mining engineering. Eurasian Mining, 2018, no. 1, pp. 45—47. [In Russ]. DOI: 10.17580/em.2018.01.10.

14. Cheremisina O. V., Litvinova T. E., Sergeyev V. V., Lutskii D. S., Lobacheva O. L. Method of extraction and separation of rare earth metals in the processing of apatite concentrate. 2018. [In Russ].

15. Yianatos J. B., Bergh L. G., Díaz F., Rodríguez J. Mixing characteristics of industrial flotation equipment. Chemical Engineering Science, 2005, vol. 60, no. 8—9, pp. 2273—2282. DOI: 10.1016/j.ces.2004.10.039.

16. Clayton R., Jameson G. J., Manlapig E. V. The development and application of the Jameson cell. Minerals Engineering, 1991, vol. 4, no. 7, pp. 925—933. DOI: 10.1016/0892—6875(91)90074—6.

17. Shean B. J., Cilliers J. J. A review of froth flotation control. International Journal of Mineral Processing, 2011, vol. 100, no. 3—4, pp. 57—71, DOI: 10.1016/j. minpro.2011.05.002.

18. Persechini M. A. M., Peres A. E. C., Jota F. G. Control strategy for a column flotation process. Control Engineering Practice, 2004, vol. 12, no. 8, pp. 963—976. DOI: 10.1016/j. conengprac.2003.11.003.

19. Sviridenko A. O., Belyakov S. А. Automation Means in the Technological Process of Mineral Ore Flotation. Journal of the Mining Institute. 2011, vol. 192, pp.183—186. [In Russ].

20. Fichera M. A., Chudacek M. W. Batch cell flotation models-a review. Minerals Engineering, 1992, vol. 5, no. 1, pp. 41—55. DOI:10.1016/0892—6875(92)90005-T.

21. Oosthuizen D. J., Craig I. K., Jämsä-Jounela S. L., Sun B. On the current state of flotation modelling for process control. IFAC-PapersOnLine. 2017, vol. 50, no. 2, pp. 19—24. DOI: 10.1016/j.ifacol.2017.12.004.

22. Gharai M., Venugopal R. Modeling of flotation processes-an overview of different approaches. Mineral Processing and Extractive Metallurgy Review, 2016, vol. 37, no. 2, pp. 120—133. DOI: 10.1080/08827508.2015.1115991.

23. Brożek M., Młynarczykowska A. Analysis of kinetics models of batch flotation. Physicochemical Problems of Mineral Processing, 2007, vol. 41, pp. 51—65.

24. Barsky L. A., Plaksin I. N. Criteria for optimizing separation processes. Moscow: Nauka, 1967. 116 p. [In Russ].

25. Tikhonov O. N. Patterns of effective separation of minerals in the processes of mineral processing. Moscow, Nedra, 1984. 208 p. [In Russ].

26. Shekhirev D. V., Smailov B. B. Kinetics of extraction of particles of different mineral composition in flotation of lead-zinc ore. Obogashchenie rud. 2016, vol. 2(362), pp. 20—26. DOI 10.17580/or.2016.02.04. [In Russ].

27. Nikolaev A. A., So Tu, Goryachev B. E. Study of patterns of flotation kinetics of inactivated sphalerite by compositions of sulfhydryl collectors by flotometric method. Mining information-analytical bulletin (scientific and technical journal). 2015, vol. 6, pp. 86—95. [In Russ].

28. Quintanilla P., Neethling S. J., Brito-Parada P. R. Modelling for froth flotation control: A review. Minerals Engineering, 2020, 106718. DOI: 10.1016/j.mineng.2020.106718.

29. Bergh L. G., Yianatos J. B. The long way toward multivariate predictive control of flotation processes. Journal of Process Control, 2011, vol. 21, no. 2, pp. 226—234.

30. Taguta J., McFadzean B., O’Connor C. The relationship between the flotation behaviour of a mineral and its surface energy properties using calorimetry. Minerals Engineering. 2019, vol. 143, 105954. DOI: 10.1016/j.mineng.2019.105954.

31. Wang P., Cilliers J. J., Neethling S. J., Brito-Parada P. R. The behavior of rising bubbles covered by particles. Chemical Engineering Journal. 2019, vol. 365, pp. 111—120. DOI: 10.1016/j.cej.2019.02.005.

32. Liu X. Q., Cheng Q., Li, J., Zhou X. D. Integrated automation system for flotation processes. Control Engineering China, 2016, vol. 23, no. 11, pp. 1702—1706. [In Russ].

33. Ignatkina V. A. Experimental studies of contrast changes in flotation properties of calcium minerals. Physico-technical problems of mineral development, 2017, no. 5, pp. 113—122. [In Russ].

34. Kuznetsova I. N., Lavrinenko A. A., Shrader E. A., Sarkisova L. M. Reduction of extraction of flotation silicates in the collective concentrate during flotation of low-sulfide platinum metal ore. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 200—208. [In Russ]. DOI 10.25018/0236-1493-2019-05—0-200—208.

35. Romachev A., Kuznetsov V., Ivanov E., Jörg B. Flotation froth feature analysis using computer vision technology. E3S Web of Conferences. EDP Sciences, 2020, vol. 192, pp. 8—14. [In Russ].

36. Aleksandrova T. N., O’Connor C. Processing of platinum group metal ores in Russia and South Africa: current state and prospects. Journal of the Mining Institute. 2020, vol. 244, pp. 462—473. DOI: 10.31897/PMI.2020.4.9. [In Russ].

37. Petrov G. V., Ya. M., Andreev Yu. V. Extraction of platinum metals in the processing of chromite ores from dunite massifs. Journal of the Mining Institute. 2018. vol. 231, pp. 281—286. [In Russ]. DOI 10.25515/PMI.2018.3.281. [In Russ].

38. Saltykova S. N., Dolivo-Dobrovolskaya G. I., Maximova A. V. Analysis of data on the crystallochemical nature of copper-nickel converter phases and Co-S binary system. Journal of the Mining Institute. 2013, vol. 202, pp. 209—213. [In Russ].

39. Alexander D., Runge K. C., Franzidis J., Manlapig E. The application of multicomponent floatability models to full-scale flotation circuits. Seventh Mill Operators’ Conference, Proceedings, 2000, vol. 6. no. 6, pp. 167—177.

40. Ruuska J., Lamberg P., Leiviskä K. Flotation model based on floatability component approach-PGE minerals case. IFAC Proceedings Volumes. 2012, vol. 45, no. 23, pp. 19—24.

41. Vinnett L., Alvarez-Silva M., Jaques A., Hinojosa F., Yianatos J. Batch flotation kinetics: Fractional calculus approach. Minerals Engineering. 2015, vol. 77, pp. 167—171. DOI: 10.1016/j.mineng.2015.03.020.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.