Thermal treatment of quartz–leucoxene concentrate

Quartz–leucoxene concentrate is a high-value titanium-bearing material huge reserves of which are in possession of the Russian Federation. This article describes assessment of influence exerted by thermal treatment (oil roasting) on phase transformations of quartz–leucoxene. It is found that quartz–leucoxene loses in roasting around 14.2% of its mass owing to removal of moisture and due to pyrolytic decomposition of oil (hydrocarbon) component. The composition of the exit gases changes subject to the conditions of thermal treatment (inert atmosphere or oxygen environment). In the oxygen environment, the gas phase is mostly contributed by the water steam and carbon dioxide, while in the inert atmosphere, in the analogous conditions, the hydrocarbon fractions are mostly removed. Thermal treatment of quartz–leucoxene in the inert atmosphere initiates formation of carbon residue which can enter a reaction of carbothermal reduction of oxide components in a range of high temperatures (1300 °С). It is hypothesized on possible internal phase transformations among micro amounts of oxidic impurities (iron oxides, calcium oxides, etc.) with generation of small amounts of phases of sphene, ilmenite and pseudobrookite in a high temperature range (above 1300 °С). The thermogravimetric analysis finds out that in a temperature range up to 900 °С, the most common in quartz–leucoxene roasting, the titanium compounds undergo no phase transformation, while the silicon compounds experience totally reversible transformations, which means that roasting aimed to remove oil products has no material effect on the chemical activity of the most valuable component of titanium. On the ground of the experimental results, the temperature range was adjusted for roasting quartz–leucoxene concentrate to minimize energy input of the process and to reduce its carbon footprint. The upper roasting limit sufficient to remove oil phase completely was set as the temperature of 575 °С.

Keywords: quartz–leucoxene, phase transformations, thermal treatment, thermogravimetric analysis, reservoir sandstone, roasting.
For citation:

Kuzin E. N., Mokrushin I. G., Kruchinina N. E. Thermal treatment of quartz–leucoxene concentrate. MIAB. Mining Inf. Anal. Bull. 2023;(2):30-42. [In Russ]. DOI: 10.25018/ 0236_1493_2023_2_0_30.

Issue number: 2
Year: 2023
Page number: 30-42
ISBN: 0236-1493
UDK: 553.494
DOI: 10.25018/0236_1493_2023_2_0_30
Article receipt date: 19.10.2022
Date of review receipt: 09.12.2022
Date of the editorial board′s decision on the article′s publishing: 10.01.2023
About authors:

E.N. Kuzin1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0003-2579-3900,
I.G. Mokrushin, Cand. Sci. (Chem.), Assistant Professor, Perm State National Research University, 614068, Perm, Russia, e-mail:, ORCID ID: 0000-0002-4095-8366,
N.E. Kruchinina1, Dr. Sci. (Eng.), Head of Chair, e-mail:, ORCID ID: 0000-0001-7597-1993,
1 D. Mendeleev University of Chemical Technology of Russia, 125480, Moscow, Russia.


For contacts:

E.N. Kuzin, e-mail:


1. Balazic M., Kopac J., Jackson M. J., Ahmed W. Review: titanium and titanium alloy applications in medicine. International Journal of Nano and Biomaterials. 2007, vol. 1, no. 1. DOI: 10.1504/IJNBM.2007.016517.

2. Whittaker M. Titanium alloys. Metals. 2015, vol. 5, no. 3, pp. 1437—1439.

3. Barreiro A. M., Pinheiro G. K., Wesling B. N., Müller D., Scarabelot L. T., de Souza L. V., Rambo C. R. Aerogel-based TiO2 stable inks for direct inkjet printing of nanostructured layers. Advances in Materials Science and Engineering. 2020, vol. 2020, article 4273097, pp. 1—9. DOI: 10.1155/2020/4273097.

4. Bernardes J. C., Pinheiro G. K., Müller D., Latocheski E., Domingos J. B., Rambo C. R. Novel modified nonalkoxide sol—gel synthesis of multiphase high surface area TiO2 aerogels for photocatalysis. Journal of Sol-Gel Science and Technology. 2020, vol. 94, pp. 425—434. DOI: 10.1007/s10971-020-05286-z.

5. Rikoshinskiy A. E. World market of pigment titanium dioxide. State, state, forecasts. Snabzhenets. 2004, no. 9 (410), pp. 164—168. [In Russ].

6. Kuzin E. N., Krutchinina N. E. Hydrolysis and chemical activity of aqueous TiCl4 solutions. Inorganic Materials. 2019, vol. 55, no. 8, pp. 885—889. DOI: 10.1134/S0020168519080065.

7. Kuzin E. N., Kruchinina N. E., Chernyshev P. I., Vizen N. S. Synthesis of Titanium Trichloride. Inorganic Materials. 2020, vol. 56, no. 5, pp. 507—511. DOI: 10.1134/ S002016852005009X.

8. Kuzin E. N., Kruchinina N. E., Fadeev A. B., Nosova T. I. Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrate with the formation of a pseudobrukite phase. Obogashchenie Rud. 2021, no. 3, pp. 33—38. [In Russ]. DOI: 10.17580/or.2021.03.06.

9. Mashkovets G. A., Bykhovskii L. Z., Remizova L. I., Chebotareva O. S. On the provision of the industry in Russia with titanium raw materials. Mineral'nye resursy Rossii. Ekonomika i upravlenie. 2016, no. 5, pp. 9—15. [In Russ].

10. Chachula F., Liu Q. Upgrading a rutile concentrate produced from Athabasca oil sands tailings. Fuel. 2003, vol. 82, no. 8, pp. 929—942. DOI: 10.1016/s0016-2361(02)00401-5.

11. Zanaveskin K. L., Meshalkin V. P. Chlorination of quartz-leucoxene concentrate of Yarega field. Metallurgical And Materials Transactions B: Process Metallurgy And Materials Processing Science. 2020, vol. 51, no. 3, pp. 906—915. DOI: 10.1007/s11663-020-01810-2.

12. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Influence of granulometric composition on the processing of autoclaved concentrate of the Yaregskoe deposit on titanium tetrachloride. Tsvetnye Metally. 2016, no. 10, pp. 79—85. [In Russ]. DOI: 10.17580/ tsm.2016.10.11.

13. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Peculiarities of the chemical and mineral composition of the rough quartz-leucoxene concentrate of the Yaregskoe deposit. Obogashchenie Rud. 2015, no. 5, pp. 25—32. [In Russ]. DOI: 10.17580/ or.2015.05.05.

14. Zanaveskin K. L., Maslennikov A. N., Dmitriev G. S., Zanaveskin L. N. Autoclave processing of quartz-leucoxene concentrate of the Yaregskoe deposit. Tsvetnye Metally. 2016, no. 3, pp. 49—56. [In Russ]. DOI: 10.17580/tsm.2016.03.08.

15. Zablotskaya Yu. V., Sadikhov G. B., Olyunina T. V., Goncharenko T. V. Prospects for the development of the Yaregskoye deposit as a source for obtaining artificial rutile and wollastonite. Chernaya metallurgiya. Byulleten' nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2015, no. 9, pp. 12—15. [In Russ].

16. Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M., Dmitriev G. S. Enrichment of leucoxene from the Yaregskoe deposit by autoclave leaching. Obogashchenie Rud. 2016, no. 6, pp. 14—20. [In Russ]. DOI: 10.17580/or.2016.06.03.

17. Rodriguez M. H., Rosales G. D., Pinna E. G., Tunez F. M., Toro N. Extraction of titanium from low-grade ore with different leaching agents in autoclave. Metals. 2020, vol. 10, no. 4. DOI: 10.3390/met10040497.

18. Sadykhov G. B., Zablotskaya Yu. V., Anisonyan K. G., Olyunina T. V. On the integrated use of leucoxene ores of the Yaregskoe deposit with the production of synthetic rutile and wollastonite and the associated extraction of rare and rare earth elements. Metally. 2016, no. 6, pp. 3—10. [In Russ].

19. Anisonyan K. G., Sadikhov G. B., Olyunina T. V., Goncharenko T. V., Leontiev L. I. Study of the process of magnetizing roasting of leucoxene concentrate. Metally. 2011, no. 4, pp. 62—66. [In Russ].

20. Anisonyan K. G., Sadikhov G. B., Olyunina T. V., Goncharenko T. V., Leontiev L. I. Physical and chemical laws of magnetizing roasting of leucoxene ores and concentrates. XX Mendeleevskiy s"ezd po obshchey i prikladnoy khimii. Tezisy dokladov v 5 t. [XX Mendeleev Congress on General and Applied Chemistry. Abstracts of reports in 5 volumes], Ekaterinburg, UrO RAN, 2016, pp. 224.

21. Anisonyan K. G. Study of the effect of firing temperature on the change in the magnetic properties of leucoxene. Materialy III Ezhegodnoy konferentsii molodykh nauchnykh sotrudnikov i aspirantov [Proceedings of the III annual conference of young researchers and graduate students], Moscow, Interkontakt Nauka, 2006, pp. 80—83. [In Russ].

22. Kopiev D. Yu., Anisonyan K. G., Goncharov K. V., Olyunina T. V., Sadikhov G. B. Study of phase transformations during reductive roasting of leucoxene concentrate with carbon. Metally. 2017, no. 3, pp. 3—7. [In Russ].

23. Kopyev D. Yu., Anisonyan K. G., Olyunina T. V., Sadikhov G. B. Influence of the conditions of reducing roasting of leucoxene concentrate on its opening during sulfuric acid decomposition. Tsvetnye Metally. 2018, no. 11, pp. 56—61. [In Russ]. DOI: 10.17580/tsm.2018.11.08.

24. Smorokov A. A., Kantaev A. S., Bryankin D. V., Miklashevich A. A. Development of a method for low-temperature desiliconization of the leucoxene concentrate of the Yaregskoye deposit with a solution of ammonium hydrodifluoride. Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya. 2022, vol. 65, no. 2, pp. 127—133. [In Russ]. DOI: 10.6060/ivkkt.20226502.6551.

25. Istomina E. I., Istomin P. V., Nadutkin A. V., Grass V. E. Desiliconization of leucoxene concentrate during vacuum silicothermal treatment. Novye ogneupory. 2020, no. 3, pp. 5—9. [In Russ]. DOI: 10.17073/1683-4518-2020-3-5-9.

26. Bhandari D., Chhibber R., Sharma L., Arora N., Mehta R. Combining CaO—SiO2— TiO2 and CaO—SiO2—Al2O3 ternary phase systems for design of bimetallic welds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2021, vol. 235, no. 8, pp. 1271—1283. DOI: 10.1177/0954405421995919.

27. Taylor R. W. Liquidus temperatures in the system FeO—Fe2O3—TiO2. Journal of the American Ceramic Society. 1963, vol. 46, no. 6, pp. 276—279.

28. Kuzin E. N., Mokrushin I. G., Kruchinina N. E. Principles of pyrometallurgical processing of quartz-leucoxene concentrate with the formation of pseudo-brookite phases. Part 2. Phase Transformations. Obogashchenie Rud. 2022, no. 5, pp. 23—28. [In Russ]. DOI: 10.17580/ or.2022.05.04.

29. Burdina A. S., Gagarina K. I., Gabov A. L., Mironova A. A. Effect of heat treatment on the phase composition of silicon dioxide. Applied Photonics. 2018, vol. 5, no. 1-2, pp. 22—31. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.