Roasting of lead and zinc sulfide ore in water vapor

The study intends to develop a new nonmechanical method for the selective disintegration of complex minerals based on roasting of lead and zinc sulfide ore in water vapor. Complex ores mostly feature higher contents of difficult and oxidized minerals, and close interpenetration of sulfide minerals. As a rule, such sulfide ore is subjected to dissociation by very fine grinding (to 2–50 μm) before flotation. Higher efficiency of processing of difficult lead and zinc sulfide ore is achievable through preliminary roasting of the ore in water vapor prior to flotation. The investigation of compositions and physicochemical properties of primary ore and roasting products used the X-ray spectral microanalysis, photon correlation spectroscopy (for the particle size analysis) and X-ray phase analysis. Physicochemical modeling of the sulfide ore–water vapor system components used the universal program Terra designed for determining equilibrium parameters of multi-component heterogeneous systems. The studies show that roasting of lead and zinc sulfide ore in water vapor at the temperature of 650–700 °C initiates selective oxidation of pyrite with formation of magnetite and hydrogen sulfide, while lead and zinc sulfides remain intact. The experiments find out that oxidation of pyrite goes with disintegration along the interfaces of lead and zinc. The roasted products are mainly ZnS, PbS, Fe3O4, SiO2 and CaCO3, which largely facilities further flotation.

Keywords: lead and zinc sulfide ore, roasting, water vapor, nonmechanical disintegration.
For citation:

Antropova I. G., Gulyashinov P. A., Merinov A. A. Roasting of lead and zinc sulfide ore in water vapor. MIAB. Mining Inf. Anal. Bull. 2021;(11):56-67. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_56.

Issue number: 11
Year: 2021
Page number: 56-67
ISBN: 0236-1493
UDK: 622.772+669.430
DOI: 10.25018/0236_1493_2021_11_0_56
Article receipt date: 27.07.2021
Date of review receipt: 04.08.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

I.G. Antropova1, Cand. Sci. (Eng.), Head of Laboratory, e-mail:,
P.A. Gulyashinov1, Cand. Sci. (Eng.), Researcher, e-mail:,
A.A. Merinov1, Engineer, e-mail:,
1 Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia.


For contacts:

P.A. Gulyashinov, e-mail:


1. Bocharov V. A., Ignatkina V. A., Lapshina G. A., Khachatryan L. S. Development of the technology of complex processing of resistant pyrite polymetallic ores of non-ferrous metals. Tsvetnye Metally. 2018, no. 4, pp. 27—34. [In Russ]. DOI: 10.17580/tsm.2018.04.03.

2. Chanturia V. A., Bocharov V. A. The current state and main directions of development of the technology of complex processing of mineral raw materials of non-ferrous metals. Tsvetnye Metally. 2016, no. 11, pp. 11—18. [In Russ]. DOI: 10.17580/tsm.2016.11.01.

3. Shumskaya E. N., Pererechnikov O. Yu., Kuptsova A. V. Features of the technology of processing polymetallic ores. Gornyi Zhurnal. 2016, no. 11, pp. 39—48. [In Russ]. DOI: 10.17580/ gzh.2016.11.08.

4. Smaylov B. B. Razrabotka sposoba otsenki obogatimosti i modelirovaniya flotatsionnykh sistem pererabotki trudnoobogatimykh svintsovo-tsinkovykh rud [Development of a method for assessing the enrichment capacity and modeling flotation systems for processing difficult-toenrich lead-zinc ores], Candidate’s thesis, Moscow, IPKON RAN, 2019, 182 p.

5. Zhihao Shen, Shuming Wen, Guang Han, Yaowen Zhou, Xu Bai, Qicheng Feng Selective depression mechanism of locust bean gum in the flotation separation of chalcopyrite from pyrite in a low-alkalinity media. Minerals Engineering. 2021, vol. 170, article 107044. DOI: 10.1016/j. mineng.2021.107044.

6. Kondratyev S. A., Rostovtsev V. I., Bochkarev G. R., Pushkareva G. I., Kovalenko K. A. Scientific substantiation and development of innovative technologies for complex processing of difficult-to-enrich ores and technogenic raw materials. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no. 5, pp. 187—202. [In Russ]. DOI: 10.1134/ S1062739114050160.

7. Ozun Savas, Vaziri Hassas Behzad, Miller J. D. Collectorless flotation of oxidized pyrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019, vol. 561, pp. 349— 356. DOI:10.1016/j.colsurfa.2018.10.064.

8. Chanturia V. A., Kozlov A. P. Modern problems of complex processing of difficult-toenrich ores and technogenic raw materials. Sovremennye problemy kompleksnoy pererabotki trudnoobogatimykh rud i tekhnogennogo syr'ya (Plaksinskie chteniya–2017) [Modern problems of complex processing of difficult-to-enrich ores and technogenic raw materials (Plaksin readings-2017)], Krasnoyarsk, 2017, pp. 2—6. [In Russ].

9. Fengnian Shi, Weiguo Xie Specific energy-based ball mill model: From batch grinding to continuous operation. Minerals Engineering. 2016, vol. 86, pp. 66—74. DOI: 10.1016/j. mineng.2015.12.004.

10. Alborov I. D., Gegueva M. M., Kasumov Yu.N., Kozyrev E. N., Sozaev V. A. Bio-geotechnology for gold-bearing ore. MIAB. Mining Inf. Anal. Bull. 2018, no. 6, pp. 126—133. [In Russ]. DOI: 10.25018/0236-1493-2018-6-0-126-133.

11. Prokopyev I. V. Razrabotka flotatsionnoy skhemy obogashcheniya svintsovo-tsinkovoy rudy s ispol'zovaniem mikrobiologicheskogo vozdeystviya [Development of a flotation scheme for the enrichment of lead-zinc ore using microbiological exposure], Candidate’s thesis, Krasnoyarsk, SFU, 2019, 121 p.

12. Ye M., Li G., Yan P., Ren J., Zheng L., Han D., Sun S., Huang S., Zhong Y. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Chemosphere. 2017, vol. 185, pp. 1189—1196. DOI: 10.1016/j.chemosphere.2017.07.124.

13. Fomchenko N. V., Muravyev M. I. Bio-leaching of sulfide concentrates with different copper and zinc contents and assessment of the quality of the obtained precipitation. Applied biochemistry and microbiology. 2020, vol. 56, no. 4, pp. 366—372. [In Russ]. DOI: 10.31857/ S0555109920040054.

14. Vostrikov V. A., Vostrikova N. M. Thermodynamic analysis of possible transformations in the metal sulfide-water vapor system. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2005, no. 6, pp. 8—13. [In Russ].

15. Lobanov V. G., Kuzas E. A., Mel'nikov A. V., Prokudina E. V., Karataeva A. V., Vikulov V. I., Nabiullin F. M., Nacharov V. B., Filonov N. A., Russkikh A. A. Patent RU 2479650. MPK C22B 11/00 (2006.01), C22B 1/02 (2006.01), C22B 3/04 (2006.01). 20.04.2013. [In Russ]

16. Akopyan K. E., Karamyan G. G., Akopyan A. L. New technology of complex processing of pyrite concentrate. Alternative Energy and Ecology (ISJAEE). 2018, no. 31-36, pp. 62—70. [In Russ]. DOI: 10.15518/isjaee.2018.31-36.062-070.

17. Fedyaeva O. N., Vostrikov A. A. Transformations of pyrite and pyrrhotite in supercritical water. Supercritical fluids. Theory and practice. 2016, vol. 11, no. 2, pp. 8—13. [In Russ].

18. Nikiforov K. A., Gulyashinov A. N. Cooperative processes in the steam technology of pyrite concentrates. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1994, no. 5, pp. 116—118. [In Russ].

19. Gulyashinov P. A., Paleev P. L., Gulyashinov A. N. Thermodynamic modeling of the process of dearsenization of hard-to-enrich gold-quartz-arsenic (skorodite) ore in a water vapor atmosphere. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no. 2, pp. 155—160. [In Russ]. DOI: 10.1134/S1062739116020526.

20. Antropova I. G., Dambaeva A. Yu., Danzheeva T. Zh. Application of sulfidizing roasting in the atmosphere of water vapor in the schemes of enrichment of oxidized lead-containing ores. Obogashchenie Rud. 2016, no. 6, pp. 3—8. [In Russ]. DOI: 10.17580/or.2016.06.01.

21. Binnewies M., Mike E. Thermochemical data of elements and compounds. 2002, 928 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.