Strength properties analysis of soil after hardening and/or cryogenic thermal reinforcement using the method of thermally stimulated acoustic emission

This study aims to develop and verify methodical approaches which enable using thermally stimulated acoustic emission in soil subjected to chemical or physical reinforcement for the soil stability control in case of climatic impact or load exerted by surface engineering facilities. To this effect, a series of experiments was carried out to find acoustic emission parameters in passive and active measurements performed in initially loose and differently reinforced soil in von Karman compression at step-by-step increment in quasi-static load. The passive acoustic measurements assumed recording acoustic emission of structural bonds in the test samples under the influence of the internal stresses which appear in overlapping of fields generated by the mechanical loading and warm-up of a geomaterial. In turn, the active acoustic measurements combined thermal activation of structural bonds in soil and its sounding using an artificial external source of a rated signal; the change in the signal parameters after passing a test sample allows judging on development of deformation in this sample. Considering the experimental patterns, the measurement interpretation approaches are substantiated. These approaches provide the noise-free numerical acoustic emission criterion of change in deformation condition of soil preliminary hardened or reinforced under the external effects and impacts. The reliability of data obtained using the proposed method is proved by comparative tests of similar samples with deformation and ultrasound measurements according to the State Standard GOST 21153.2.

Keywords: soil, temperature mode, load-bearing capacity, stress state, artificial hardening, acoustic emission, patterns, experiment, development of geocontrol methods, noise factors.
For citation:

Novikov E. A., Klementyev E. A. Strength properties analysis of soil after hardening and/or cryogenic thermal reinforcement using the method of thermally stimulated acoustic emission. MIAB. Mining Inf. Anal. Bull. 2022;(4):134-155. [In Russ]. DOI: 10.25018/0236_ 1493_2022_4_0_134.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 21-77-00010.

Issue number: 4
Year: 2022
Page number: 134-155
ISBN: 0236-1493
UDK: (624.131.37+624.138+551.34):(534.2+534.6)
DOI: 10.25018/0236_1493_2022_4_0_134
Article receipt date: 11.01.2022
Date of review receipt: 14.02.2022
Date of the editorial board′s decision on the article′s publishing: 10.03.2022
About authors:

E.A. Novikov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: e.novikov@misis.ru, Scopus ID: 55235147200, ORCID ID: 0000-0002-6997-1097,
E.A. Klementyev1, Student, e-mail: evgeniy-klementevof@mail.ru, Scopus ID: 57217249165, ORCID ID: 0000-0001-7242-0440,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

E.A. Novikov, e-mail: e.novikov@misis.ru.

Bibliography:

1. Sokolov M. V., Prostov S. M., Gerasimov O. V. Prediction of geomechanical state of stabilized soil foundation of mine engineering building. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2019, no. 6, pp. 199—210. [In Russ]. DOI: 10.31675/ 1607-1859-2019-21-6-199-210.

2. Khafizov R. M. Analysis of methods for determining the deformation characteristics of cohesive soil. Soil Mechanics and Foundation Engineering. 2016, vol. 52, no. 6, pp. 361—365 DOI: 10.1007/s11204-016-9354-z.

3. Boldyrev G. G. Metody opredeleniya mekhanicheskikh svoystv gruntov. Sostoyanie voprosa: monografiya [Methods for determining mechanical properties of soils. The state of the question, monograph], Penza, PGUAS, 2008, 696 p.

4. Prostov S. M., Gerasimov O. V., Nikulin N. Yu. Kompleksnyy geologo-geofizicheskiy monitoring protsessov uprochneniya gruntov: monografiya [Integrated geological and geophysical monitoring of soil hardening processes, monograph], Tomsk, 2015, 188 p.

5. Ross N., Brabham P., Harris C., Christiansen H. Internal structure of open system pingos, Adventdalen, Svalbard: The use of resistivity tomography to assess ground-ice conditions. Journal of Environmental and Engineering Geophysics. 2007, vol. 12, no. 1, pp. 113–126. DOI: 10.2113/JEEG12.1.113.

6. Maurer H., Hauck C. Geophysical imaging ofalpine rock glaciers. Journal of Glaciology. 2007, vol. 53, no. 180, pp. 110—120. DOI: 10.3189/172756507781833893.

7. Moorman B. J., Robinson S. D., Burgess M. M. Imaging periglacial conditions with ground-penetrating radar. Permafrost and Periglacial Processes. 2003, vol. 14, pp. 319—329. DOI: 10.1002/ppp.463.

8. Sheinin V. I. Features of the use of borehole radioisotope measurements for assessing the properties of soils. Bulletin of Science and Research Center of Construction. 2014, no. 10, pp. 152—159. [In Russ].

9. Tyutyunnik P. M. Geoakusticheskiy kontrol' protsessov zamorazhivaniya i tamponirovaniya porod [Geoacoustic control of the processes of freezing and tamponing of rocks], Moscow, Nedra, 1994, 255 p.

10. Da-Yan Wang, Yuan-Lin Zhu, Ma Wei, Yong-Hong Niu Application of ultrasonic technology for physical–mechanical properties of frozen soils. Cold Regions Science and Technology. 2006, vol. 44, no. 1, pp. 12—19. DOI: 10.1016/J.COLDREGIONS.2005.06.003.

11. Fomenko N. E., Kapustin V. V., Gaponov D. A., Fomenko L. N. Research of the technogenic fixed grounds of the bottom of foundations by radar and seismic methods in conditions of the longzterm used object of the cultural heritage. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2018, vol. 329, no. 8, pp. 16—29. [In Russ].

12. Tarasenko S. E., Sheremetov I. M. Application of geophysical methods in the course of engineering surveys at sites of mass construction. Promyshlennoe i grazhdanskoe stroitel 'stvo. 2015, no. 3, pp. 64—68. [In Russ].

13. Kolesnikov V. P., Prigara A. M., Tatarkin A. V. Comprehensive geophysical studies of the state of the soils of the foundation and foundations of engineering structures. Geologiya i poleznye iskopaemye Zapadnogo Urala. 2011, no. 11, pp. 89—91. [In Russ].

14. Voznesenskiy A. I., Izyumov S. V., Druchinin S. V., Mironov S. I. Complex geophysical researches in the zone of underground building of a collector. MIAB. Mining Inf. Anal. Bull. 2010, no. 8, pp. 95—101. [In Russ].

15. Voznesensky A. S., Kutkin Y. O., Krasilov M. N. Interrelation of the acoustic Q-factor and strength in limestone. Journal of Mining Science. 2015, vol. 51, no. 1, pp. 23—30. DOI: 10.1134/ S1062739115010044.

16. Shkuratnik L. V., Novikov E. A. Thermally stimulated acoustic emission of rocks as a promising tool of geocontrol (review). Gornyi Zhurnal. 2017, no. 6, pp. 21—27. DOI: 10.17580/ gzh.2017.06.04.

17. Voznesenskii A. S., Shkuratnik V. L., Kutkin Ya. O. Dynamics of thermal and mechanical loading as a cause of acoustic emission in rock. Rock Dynamics and Applications — State of the Art. Proceedings of the 1st International Conference on Rock Dynamics and Applications, RocDyn-1. 2013, pp. 429—435.

18. Novikov E. А., Shkuratnik V. L., Zaytsev M. G. Manifestations of acoustic emission in frozen soils with simultaneous influence of variable mechanical and thermal effects on them. Journal of Mining Institute. 2019, vol. 238, no. 4, pp. 383—391. DOI: 10.31897/pmi.2019.4.383.

19. Rivera-Gómez C., Galán-Marín C., López-Cabeza V. P., Diz-Mellado E. Sample key features affecting mechanical, acoustic and thermal properties of a natural-stabilised earthen material. Construction and Building Materials. 2021, vol. 271, article 121569. DOI: 10.1016/j.conbuildmat.2020.121569.

20. Xia Z., Chen R.-P., Kang X. Laboratory characterization and modelling of the thermalmechanical properties of binary soil mixtures. Soils and Foundations. 2019, vol. 59, no. 6, pp. 2167—2179. DOI: 10.1016/j.sandf.2019.11.013.

21. Novikov E. A., Shkuratnik V. L., Zaitsev M. G., Klementyev E. A., Blokhin D. I. Acoustic emission of frozen soils under quasi-static mechanical and cyclic thermal loading. Soil Mechanics and Foundation Engineering. 2020, vol. 57, no. 2, pp. 97–104. DOI: 10.1007/s11204-020-09643-6.

22. Novikov E. А., Zaytsev M. G. Using acoustic emission and memory effect in evaluation of structural stability of frozen soil under cyclic heating and mechanical loading. MIAB. Mining Inf. Anal. Bull. 2020, no. 3, pp. 30–44. DOI: 10.25018/0236-1493-2020-3-0-30-44.

23. Kravchenko O. S. Regular patterns of acoustic activity, axial and volumetric strains in rock salt under Karman’s loads and thermal effects. MIAB. Mining Inf. Anal. Bull. 2020, no. 4, pp. 96–104. DOI: 10.25018/0236-1493-2020-4-0-96-104.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.