Bibliography: 1. Madzokere Tatenda Crispen, Nheta Willie, Gumbochuma Sheunopa Advances of nanotechnology applications in mineral froth flotation technology. Application of nanotechnology in mining processes: Beneficiation and sustainability. Chapter 8. 2022, pp. 289—326. DOI: 10.1002/9781119865360.ch8.
2. Chanturia V. A., Kozlov P. A. Modern problems of complex processing of refractory ores and technogenic raw materials. Materialy Mezhdunarodnoy nauchnoy konferentsii «Plaksinskie chteniya» [Materials of the International Scientific Conference «Plaksin readings»], Krasnoyarsk, 2017, pp. 3—6. [In Russ].
3. Chanturiya V. A., Bocharov V. A. Modern state and basic ways of technology development for complex processing of non-ferrous mineral raw materials. Tsvetnye Metally. 2016, no. 11, pp. 11—18. [In Russ]. DOI: 10.17580/tsm.2016.11.01.
4. Metin Can N., Çağrı Başaran Effects of different grinding media and milling conditions on the flotation performance of a copper-pyrite ore. Minerals. 2023, vol. 13, no. 1, article 85. DOI: 10.3390/min13010085.
5. Morozov Yu. P., Intogarova T. I., Valieva O. S., Donets Lu. O. Flotation classification in closed circuit grinding as a way of reducing sulfide ore overgrinding. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2021, no. 1, pp. 85—96. [In Russ]. DOI: 10.21440/0536-10282021-1-85-96.
6. Plaksin I. N., Shafeev R. Sh. Influence of electrochemical inhomogeneity of the surface of sulfide minerals on xanthate distribution under flotation conditions. Doklady Akademii nauk SSSR. 1958, vol. 121, no. 1, pp. 145—148. [In Russ].
7. Castro S., Lopez-Valdivieso A., Laskowski J. S. Review of the flotation of molybdenite. Part I: Surface properties and floatability. International Journal of Mineral Proccesing. 2016, vol. 148, pp. 48—58. DOI: 10.1016/j.minpro.2016.01.003.
8. Xiaoqin Tang, Ye Chen A review of flotation and selective separation of pyrrhotite. A perspective from crystal structures. International Journal of Mining Science and Technology. 2022, vol. 32, no. 4, pp. 847—863. DOI: 10.1016/j.ijmst.2022.06.001.
9. Yi G., Macha E., Van J. Dyke, Ed R. Macha, McKay T., Free M. L. Recent progress on research of molybdenite flotation. A review. Advances in Colloid and Interface Science. 2021, vol. 295, no. 4, article 102466. DOI: 10.1016/j.cis.2021.102466.
10. Chimonyo W., Corin K. C., Wiese J. G., O’Connor C. T. Redox potential control during flotation of a sulphide mineral ore. Minerals Engineering. 2017, vol. 110, pp. 57—64. DOI: 10.1016/j.mineng.2017.04.011.
11. Ignatkina V. A., Aksenova D. D., Kayumov A. A. et al. Hydrogen peroxide in reagent regimes in copper sulphide ore flotation. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2022, no. 1, pp. 139—152. [In Russ]. DOI: 10.15372/FTPRPI20220115.
12. Chen Y., Chen X., Peng Y. The effect of sodium hydrosulfide on molybdenite flotation as a depressant of copper sulfides. Minerals Engineering. 2020, vol. 148, no. 15, article 106203. DOI: 10.1016/j.mineng.2020.106203.
13. Vazife J., Pourghahramani P., Asqarian H., Bagherian A. Effects of pH and pulp potential on selective separation of Molybdenite from the Sungun Mine Cu-Mo concentrate. International Journal of Mining and Geo-Engineering. 2017, vol. 51, no. 2, pp. 147—150. DOI: 10.22059/ IJMGE.2017.220005.594638.
14. Solozhenkin P. M., Zinchenko Z. A. Obogashchenie sur'myanykh rud [Enrichment of antimony ores], Moscow, Nauka, 1985, 180 p.
15. Qian Zhang, Shuming Wen, Qicheng Feng, Genping Huang Interaction mechanism of lead ions with stibnite surfaces and enhancement of xanthate adsorption. Journal of Molecular Liquids. 2021, vol. 331, article 115802. DOI: 10.1016/j.molliq.2021.115802.
16. Ignatkina V. A., Kayumov A. A., Ergesheva N. D., Chernova P. A. Floatability of lowoxidizable molybdenum and antimony sulfides in controlled oxidation-reduction conditions. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2023, no. 1, pp. 145—160. [In Russ]. DOI: 10.15372/FTPRPI20230114.
17. Solozhenkin P. M. Interactions of antimony minerals with lead cations, sulfhydryl reagents based on molecular modeling. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya. Materialy XXV Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Scientific bases and practice of processing ores and technogenic raw materials. Materials of the XXV International Scientific and Technical Conference], Ekaterinburg, Izd-vo «Fort Dialog-Iset'», 2020, pp. 74—77. [In Russ].
18. Segura-Salazar J., Brito-Parada P. R. Stibnite froth flotation. A critical review. Minerals Engineering. 2021, vol. 163, article 106713. DOI: 10.1016/j.mineng. 2020.106713.
19. Zhengyao Li, Yuanyuan Wang, Muxin Jia, Ligang Wen, Xuewen Wang, Jinzhi Wei Effect and mechanism of depressant disodium carboxymethyl trithiocarbonate on flotation separation of stibnite and pyrite. Mining Metallurgy & Exploration. 2022, vol. 39, pp. 1267—1275. DOI: 10.1007/s42461-022-00582-4.
20. Kayumov A. A. Povyshenie effektivnosti flotatsii tennantita iz kolchedannoy mednotsinkovoy rudy na osnove selektivnykh reagentnykh rezhimov flotatsii [Improving the efficiency of tennantite flotation from pyrite copper-zinc ore based on selective reagent regime of flotation], Candidate’s thesis, Moscow, NITU «MISiS», 2019, 27 p.
21. Ignatkina V. A., Kayumov A. A., Ergesheva N. D. Floatability and calculated reactivity of gold and sulfide minerals. Izvestiya vuzov. Tsvetnaya metallurgiya. 2022, vol. 28, no. 4, pp. 4—14. [In Russ]. DOI: 10.17073/0021-3438-2022-4-4-14.
22. Chanturiya V. A., Krasavtseva E. A., Makarov D. V. Electrochemistry of sulfides: Process and environmental aspects. Sustainability. 2022, vol. 14, article 11285. DOI: 10.3390/su141811285.