Energy efficiency of permanent magnet synchronous motor operation on longwall belt conveyor

The article discusses energy efficiency of operation of a permanent magnet synchronous motor on a longwall belt conveyor in a coal mine. The study is carried out for a standard high-production longwall in the Alarda Mine of Yuzhkuzbass Company. An analytical pro cedure is developed to calculate specific energy consumption by a twin-motor asynchronous drive and by a drive with permanent magnet synchronous motors on a belt conveyor at the varied parameters of coal flow, with regard to the dependence of the drive efficiency on its load factor for the shuttle and one-way operation of a cutter–loader. The dependences of the drive efficiency of the belt conveyor on the conveyor load factor are determined. The specific energy consumptions of the conveyor drive during mining a longwall 450 m long are correlated with the coal seam cuttability for the twin-motor asynchronous drive and for the twin-motor drive with permanent magnet synchronous motors in the shuttle and one-way operation of a cutter–loader.

Keywords: cutter–loader, longwall, longwall belt conveyor, specific energy consumption, consumed energy, capacity, productivity, coal cuttability.
For citation:

Babokin G. I., Shprekher D. M., Ovsyannikov D. S. Energy efficiency of permanent magnet synchronous motor operation on longwall belt conveyor. MIAB. Mining Inf. Anal. Bull. 2025;(1):141-153. [In Russ]. DOI: 10.25018/0236_1493_2025_1_0_141.

Acknowledgements:
Issue number: 1
Year: 2025
Page number: 141-153
ISBN: 0236-1493
UDK: 622.23.05:62-531:62-83
DOI: 10.25018/0236_1493_2025_1_0_141
Article receipt date: 27.04.2024
Date of review receipt: 16.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.12.2024
About authors:

G.I. Babokin1, Dr. Sci. (Eng.), Professor, Professor, e-mail: babokinginov@yandex.ru,
D.M. Shprekher1,2, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: shpreher-d@yandex.ru,
D.S. Ovsyannikov2, Graduate Student, e-mail: ovsyannikov_d_s@mail.ru,
1 NUST MISIS, 119049, Moscow, Russia,
2 Tula State University, 300012, Tula, Russia

 

For contacts:

D.M. Shprekher, e-mail: shpreher-d@yandex.ru.

Bibliography:

1. Efimov V. I., Hmelinskiy A. A., Mefodiev S. N. Modern approaches to configuration of longwall equipment for coal mining on flat seams. Ugol'. 2019, no. 6, pp. 36—40. [In Russ]. DOI: 10.18796/00415790-2019-6-36-40.

2. Meshkov A. A., Volkov M. A., Ordin A. A., Timoshenko A. M., Botvenko D. V. On record length and productivity of highwall mining the V.D. Yalevsky mine. Ugol'. 2018, no. 7, pp. 4—7. [In Russ]. DOI: 10.18796/0041-5790-2018-7-4-7.

3. Petrov V., Kuznetsov N., Morozov I. Experimental studies of energy technology indicators during ore crushing at a processing plant. Proceedings of IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation, ICATMRI 2020. Buldhana, India, 2020, pp. 1—4. DOI: 10.1109/ICATMRI51801.2020.9398320.

4. Malafeev S. I., Zakharov A. V., Safronenkov Yu. A. A new series of asynchronous frequencycontrolled motors for mining excavators. Russian Electrical Engineering. 2019, vol. 90, pp. 299—303. DOI: 10.3103/S1068371219040060.

5. Karpenko S. M., Karpenko N. V., Bezginov G. Yu. Forecasting power consumption at mining enterprises using statistical methods. Russian Mining Industry Journal. 2022, no. 1, pp. 82—88. [In Russ]. DOI: 10.30686/1609-9192-2022-1-82-88.

6. Ordin A. A., Metelkov A. A. On the issue of optimizing the length to productivity of a complexmechanized coalmine working face. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2013, no. 2, pp. 100—112. [In Russ].

7. Kazachenko G. V., Kislov N. V., Basalay G. A. Basics of calculating power costs and productivity of shearers and roadheaders. Gornye mashiny i oborudovanie [Mining machines and equipment], Minsk, BNGU, 2015, 75 p.

8. Voronin V. A., Nepsha F. S. Simulation modeling of the electric drive of a shearer for assessing the energy efficiency indicators of the power supply system. Journal of Mining Institute. 2020 vol. 246, pp. 633—639. [In Russ]. DOI: 10.31897/PMI.2020.6.5.

9. Plotnikov V. P. Derivation of a formula for calculating the productivity of shearers with a drift, drum or crown executive body. Ugol'. 2009, no. 9, pp. 6—7. [In Russ].

10. Rakov D. N., Mogila V. S., Drobov A. V., Galushko V. N. Analysis of influence of various factors on the working characteristic of asynchronous motors. Bulletin of BSUT: science and transport. 2017, no. 1, pp. 10—13. [In Russ].

11. Belyaevsky R. V. Analysis of the influence of the load factor of asynchronous motors on reactive power consumptio. Bulletin of the Kuzbass State Technical University. 2010, no. 6, pp. 66—69. [In Russ].

12. Braslavskiy I. Ya., Ishmatov Z. Sh., Polyakov V. N. Energosberegayushchiy asinkhronniy elektroprivod [Energy-saving asynchronous electric drive], Moscow, 2004, 248 p.

13. Galkin V. I., Sheshko E. E., Dyachenko V. P. Justification of the design parameters of curved sections of belt conveyors for the mining industry. Gornyi Zhurnal. 2018, no. 12, pp. 69—73. [In Russ]. DOI: 10.17580/gzh.2018.12.14.

14. Babokin G. I. Influence of longwall length on specific power consumption. MIAB. Mining Inf. Anal. Bull. 2023, no. 5, pp. 155—169. [In Russ]. DOI: 10.25018/0236_1493_2023_5_0_155.

15. Junejo A. K., Xu W., Mu C., Ismail M. M., Liu Y. Adaptive speed control of PMSM drive system based a new sliding-mode reaching law. IEEE Transactions on Power Electronics. 2020, vol. 35, pp. 12110—12121. DOI: 10.1109/TPEL.2020.2986893.

16. Semykina I. Yu., Tarnetskaya A. V. Control system for the electric drive of a belt conveyor based on a gearless synchronous motor-drum. Mining Equipment and Electromechanics. 2019, no. 1, pp. 47—53. [In Russ]. DOI: 10.26730/1816-4528-2019-1-47-53.

17. Lian C., Xiao F., Gao S., Liu J. Load torque and moment of inertia identification for permanent magnet synchronous motor drives based on sliding mode observer. IEEE Transactions on Power Electronics. 2019, vol. 34, pp. 5675—5683. DOI: 10.1109/TPEL.2018.2870078.

18. Ren B., Xie C., Sun X., Zhang Q., Yan D. Parameter identification of a lithiumion battery based on the improved recursive least square algorithm. IET Power Electronics. 2020, vol. 13, pp. 2531— 2537. 10.1049/ietpel.2019.1589.

19. Firago B. I., Aleksandrovsky S. V. Energetic factors of a frequency-controlled synchronous electric drive. Energetika. Proceedings of CIS higher education institutions and power engineering associations. 2018 vol. 61, no. 4, pp. 287—298. [In Russ]. DOI: 10.21122/1029-7448-2018-61-4-287-298.

20. Ma S. H. Study on the application of permanent magnet synchronous motors in underground belt conveyors. IOP Conference Series: Materials Science and Engineering. 2017, vol. 283, article 012006. DOI: 10.1088/1757-899X/283/1/012006.

21. Qixun Zhou, Hao Gong, Guanghui Du, Yingxing Zhang, Hucheng He Distributed permanent magnet direct-drive belt conveyor system and its control strategy. Energies. 2022, vol. 15, article 8699. DOI: 10.3390/en15228699.

22. Brodny J., Alszer S., Krystek M., Tutak M. Availability analysis of selected mining machinery. Archives of Control Sciences. 2017, vol. 27(LXIII), no. 2, pp. 197—209. DOI: 10.1515/ACSC-20170012.

23. Stecula K., Brodny J., Tutak M. Informatics platform as a tool supporting research regarding the effectiveness of the mining machines work. CBU International Conference on Innovations in Science and Education. 2017, pp. 1215—1219. DOI: 10.12955/cbup.v5.1099.

24. Ning Wang, Zongguo Wen, Mingqi Liu, Jie Guo Constructing an energy efficiency benchmarking system for coal production. Applied Energy. 2016, vol. 169, pp. 301—308. DOI: 10.1016/j. apenergy.2016.02.030.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.