Aerospace multispectral and hyperspectral imagery in mining area studies

This paper reviews and discusses studies on multispectral and hyperspectral imagery. The multispectral and hyperspectral images are characterized. Parameters, advantages of spaceand air-born spectrometers Hyperion and Hymap are described. The case-study of ecological monitoring of mining areas using spectrometers Hyperion and Hymap is discussed in detail. The Hyperion and Hymap spectrometers image mineralogical composition of waste dumps and water bodies as function of their chemical composition. The dump mineralogy maps plotted suing Hyperion and Hymap images are presented with their spectral reflectance graphs. The NDVI and AMWI estimates obtained using Landsat images are given. NDVI was calculated for Bazhenov chrysotile asbestos field, and AMWI was found for water bodies in the closed Levikha mine area. From the NDVI evidence, natural healing has not yet started on Vostochny dump in Bazhenov field. The AMWI index is unrelated with Fe concentration in acid mine water in case of small water channels. it is topical to study spectral properties of objects.

Keywords: remote sensing, hyperspectral imagery, multispectral imagery, hyperspectral data cube, spectrometers Hyperion and Hymap, hyperspectral imagery processing, NDVI, AMWI, Landsat, QGIS, ENVI.
For citation:

Rybnikov P. A., Buzina D. A. Aerospace multispectral and hyperspectral imagery in mining area studies. MIAB. Mining Inf. Anal. Bull. 2021;(11-1):55—70. [In Russ]. DOI: 10.2501 8/0236_1493_2021_111_0_55.

 

Acknowledgements:

The article was prepared as part of the implementation of the state task of the IGD of the Ural Branch of the Russian Academy of Sciences on the topic No. 0328-2019-0005. 

Issue number: 11
Year: 2021
Page number: 55-70
ISBN: 0236-1493
UDK: 528.88+629.78
DOI: 10.25018/0236_1493_2021_111_0_55
Article receipt date: 25.05.2021
Date of review receipt: 03.09.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

Rybnikov P. A.1,2, Cand. Sci. (Geol. Mineral.), Leading Researcher, Head of the Laboratory of Geoinformation and Digital Technologies in Subsoil Management;
Buzina D. A.1, Junior Researcher at the Laboratory of Geoinformation and Digital Technologies in Subsoil Management, e-mail: buzina.dasha2014@yandex.ru;
1 Mining Institute of the Ural Branch of the Russian Academy of Sciences, 58 MaminSibiryak str., Yekaterinburg, Russia, 620075;
2 Ural State Mining University, 30 Kuibyshev str., Yekaterinburg, Russia, 620144.

 

For contacts:
Bibliography:

1. Antonova V. A. Vozmozhnosti giperspektral’nogo distantsionnogo zondirovaniya [Possibilities of hyperspectral remote sensing]. Sovremennaya nauka: aktual’nyye problemy teorii i praktiki. Seriya: Estestvennyye i tekhnicheskiye nauki [Modern science: actual problems of theory and practice. Series: Natural and technical sciences], 2019, no. 11—2, pp. 35—38. [In Russ]

2. Borzov S. M., Guryanov M. A. Klassifikatsiya giperspektral’nykh izobrazheniy na osnove sootnosheniy yarkostey razlichnykh kanalov [Classification of hyperspectral images based on the brightness ratios of different channels]. Interekspo Geo-Sibir Publ., 2018, vol. 1, no. 4, pp. 81—88. [In Russ]

3. Kolesnik I. V. Zemlya. Vzglyad iz kosmosa. Giperspektral’naya syomka [Land. View from space. Hyperspectral imaging]. Shag v nauku [Step into science], 2019, no. 3, pp. 113—114. [In Russ]

4. Tretyakov V. A. Osnovnyye tendentsii razvitiya giperspektral’noy apparatury v mire [Main trends in the development of hyperspectral equipment in the world].. Kosmonavtika i raketostroeniye [Cosmonautics and rocket science], 2013, no. 4, pp. 36—40. [In Russ]

5. Artyukhina N. K. Osobennosti postroeniya videospektrometrov distantsionnogo zondirovaniya Zemli iz kosmosa [Main features of the construction of video spectrometers for remote sensing of the Earth from space]. Pribory i metody izmereniy [Instruments and measurement methods], 2010, no. 1, pp. 56—62. [In Russ]

6. Gaponov M. I. Bortovoy akustoopticheskiy giperspektrometr dlya distantsionnogo zondirovaniya [Onboard acousto-optic hyperspectrometer for remote sensing]. Akustoopticheskiye i radiolokatsionnye metody izmereniy i obrabotki informatsii. Materialy mezhdunarodnoy nauchnoy konferentsii [Acousto-optic and radar methods of measurement and information processing. Proceedings of the International scientific conference]. Collection of articles, 2017, pp. 259—261. [In Russ]

7. Bondur V. G. Sovremennyye podkhody k obrabotke giperspektral’nykh aerokosmicheskikh izobrazheniy [Modern approaches to hyperspectral aerospace image processing]. Giperspektral’nyye pribory i tekhnologii [Hyperspectral devices and technologies], 2013, pp. 14—18. [In Russ]

8. Lomako A. A. Metody i algoritmy analiza giperspektral’nykh izobrazheniy [Methods and algorithms for the hyperspectral images analysis]. Prikladnyye problemy optiki, informatiki, radiofiziki i fiziki kondensirovannogo sostoyaniya. Materialy IV mezhdunarodnoy nauch.-prakt. konf. [Applied Problems of Optics, Informatics, Radiophysics, and Condensed Matter Physics. Proceedings of the IV International scientific-practical conference], 2017, pp. 85—87. [In Russ]

9. Pertsev D.Yu. Sistema szhatiya giperspektral’nykh dannykh [Hyperspectral data compression system]. Informatsionnyye tekhnologii v promyshlennosti, logistike i sotsial’noy sfere. X mezhdunar. nauch.-tekhn. konf. : tez. dokladov [Information technologies in industry, logistics, and social sphere. The X international scientific and technical conference. Abstracts of papers, 2019, pp. 165—166. [In Russ]

10. Nikishin Yu.A. Perspektivy razvitiya giperspektral’noyb syomochnoy sistemy kosmicheskogo bazirovaniya [Prospects for the development of a space-based hyperspectral imaging system. Geodeziya i aerofotosyomka Izvestiya vysshikh uchebnykh zavedeniy [Geodesy and aerial photography. Proceedings of higher educational institutions], 2013, no. 3, pp. 35—41. [In Russ]

11. Riaza A., Buzzi J., Garcia-Melendez E., Vazquez I., Bellido E., et al. Pyrite mine waste and water mapping using Hymap and Hyperion hyperspectral data. Environmental Earth Sciences, Springer, 2011, DOI 10.1007/s12665—011—1422—0.

12. Lotfi M., Arefi H., Bahroudi A. Investigating Alteration Zone Mapping Using EO-1 Hyperion Imagery and Airborne Geophysics Data. Journal of Mining and Environment (JME). vol. 11, no. 2, 2020, 405—417. DOI: 10.22044/jme.2020.8244.1699.

13. Ramakrishnan D., Rishikesh Bharti. Hyperspectral remote sensing and geological applications. Current Science, vol. 108, no. 5, 2015, pp. 879—891.

14. Chandan Kumar, Amba Shetty, Simit Raval, Prashant Kumar Champatiray, Richa Sharma. Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. The International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, vol. XL-8, 2016, pp. 455—461. DOI:10.5194/isprsarchives-XL-8—455—2014.

15. Magendran, T., Sanjeevi, S. Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in the part of Noamundi, Eastern India. International Journal of Applied Earth Observation and Geoinformation, 27, 2016, pp. 117—127. DOI: 10.1016/j. jag.2013.09.004.

16. Belova E. I., Ershov D. V. Metod predvaritel’noy obrabotki stsen LANDSAT-5/7 s izobrazheniem snezhnogo pokrova [The method for preliminary processing of LANDSAT-5/7 scenes with the snow cover]. Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space], 2012, vol. 9, no. 4, pp. 9—14. [In Russ]

17. Adamovich T. A. Izucheniye sezonnoy dinamiki vegetatsionnogo indeksa NDVI po dannym Landsat [Study of the seasonal dynamics of the vegetation index (NDVI) on the basis of Landsat data]. Perspektivy razvitiya nauchnykh issledovaniy v 21 veke. Materialy XIII mezhdunar. nauch.-prakt. konf. [Prospects for the scientific research development in the 21st century. Proceedings of the XIII International scientific-practical conference], 2017, pp. 99—100. [In Russ]

18. Berezina O. A., Shikhov A. N., Abdulin R. K. Primeneniye mnogoletnikh ryadov dannykh kosmicheskoy syomki dlya otsenki ekologicheskyj situatsii v ugledobyvayushchikh rayonakh (na primere likvidirovannogo Kizelovskogo ugol’nogo basseyna) [Application of long-term record of satellite imagery data for assessing the ecological situation in coal-mining regions (on the example of abandoned Kizelovskiy coal basin)]. Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space], 2018, vol. 15, no. 2, pp. 144—158, DOI: 10.21046/2070—7401—2018— 15—2-144—158. [In Russ]

19. Pyankov, S. V., Maximovich, N. G., Khayrulina, E. A. et al. Monitoring Acid Mine Drainage’s Effects on Surface Water in the Kizel Coal Basin with Sentinel-2 Satellite Images. Mine Water Environ, 2021. DOI: 10.1007/s10230—021—00761—7.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.