Feasibility of creating and mining of artificial deposits. Inferences and prospects

The idea of creating artificial deposits is becoming increasingly relevant today due to many factors, including scantiness of mineral resources. A classic example of an artificial deposit is a manmade deposit composed of mining, processing, metallurgical and other industrial waste. At the same time, the technological advance allows both improving the artificial deposit mechanisms and creating new deposits. This article gives key examples of preparedness of the advanced technologies for creation of artificial deposits. The existing methods of mineral mining using natural processes (experimental facility at the Kudryavy volcano—to accumulate useful components from low-density fluids; Svartsengi geothermal power plant—to supply local residents with power and hot water) and using industrial waste (bacterial leaching of difficult minerals, processing of waste of thermal power pants, hydroelectric power plants, etc.) are described. A new option in mineral mining is discussed, namely, space technology Asteroid Redirect Mission (to redirect near-Earth and potentially hazardous asteroids).

Keywords: artificial deposits, advanced technologies, bacterial leaching, industrial waste processing, space technologies, Asteroid Redirect Mission, facility at the Kudryavy volcano, geothermal stations.
For citation:

PlechovP. Yu., Konovalova K. A. Artificial deposits and the possibility of their creation. MIAB. Mining Inf. Anal. Bull. 2021;(3-1):34—39. [In Russ]. DOI: 10.25018/0236_1493_2021_31_0_34.

 

Acknowledgements:
Issue number: 3
Year: 2021
Page number: 34-39
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2021_31_0_34
Article receipt date: 27.11.2020
Date of review receipt: 23.12.2020
Date of the editorial board′s decision on the article′s publishing: 10.02.2021
About authors:

Plechov P. Yu., Dr. Sci. (Geol. Mineral.), professor RAS, director in Fersman Mineralogical Museum RAS, e-mail: pplechov@gmail.com;
Ksenia A. Konovalova, leading researcher in Fersman Mineralogical Museum RAS, Moscow, Russia, e-mail: spacelikeyou@yandex.ru.
1. Fersman mineralogical museum RAS, Moscow, Russia;
2. Faculty of Geology, Moscow State University, Moscow, Russia;
3. Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS, Moscow, Russia.

For contacts:

P.Yu. Plechov, e-mail: pplechov@gmail.com

Bibliography:

1. Sillitoe, R. H. Porphyry copper systems. Economic geology. 2010. no. 105—1, pp. 3—41.

2. Kremenetskij A. A., Spiridonov I. G., Gus’kov A. J. Patent RU 2299255 C2, 20.05.2007.

3. Kremenetsky A. A., Chaplygin I. V. Concentration of rhenium and other metals in gases of the Kudryavy volcano. (Itupur island, Kurile islands). Doklady Earth Sciences. 2010. Т. 430. no. 1. pp. 114—119. [In Russ].

4. Pekov I. V. et al. Oxidizing-type fumaroles of the Tolbachik volcano., a mineralogical and geochemical unique. Geology and geophysics. 2020. Т. 61. no. S5—6. pp. 826—843. [In Russ].

5. Thorolfsson, Geir. Maintenance history of a geothermal plant: Svartsengi Iceland. Proceedings of the World Geothermal Congress 2005, Antalya, Turkey. 2005.

6. Hardardóttir, Vigdís, et al. Cu-rich scales in the Reykjanes geothermal system, Iceland. Economic Geology. 2010. no. 105—6, pp. 1143—1155.

7. Gudkov S. S., Shketova L. E., Mikhajlova A. N. Bacterial leaching of refractory ores and concentrates. Gornyi Zhurnal. 2011. no. 4, pp. 27—28. [In Russ].

8. Marra, Alessandra, et al. Bioleaching of metals from WEEE shredding dust. Journal of environmental management. 2018. no. 210, pp. 180—190.

9. Yin, Shenghua, et al. Copper bioleaching in China: Review and prospect. Minerals. 2018. no. 8—2, p. 32.

10. Mingaleeva G. R. et al. The modern trends of processing and use of ash and slag waste thermal power plant and boilers. Modern Problems of Science and Education. Surgery. 2014. no. 6, pp.225—225. [In Russ].

11. Shabarov A. N., Nikolaeva N. V., Complex utilization of treatment wastes from thermal power plants. Zapiski Gornogo Instituta. 2016. no. 220. [In Russ].

12. Tomblin, David, et al. Integrating Public Deliberation into Engineering Systems: Participatory Technology Assessment of NASA’s Asteroid Redirect Mission. Astropolitics. 2017. no. 15—2, pp. 141—166.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.