Intensity and nature of seismic impact of Kostomuksha GOK

Authors: Lebedev A. A.

The results of the two-year study into seismic impacts of Kostomuksha GOK (NW part of the Karelian craton) are presented. A brief description of Kostomuksha ore region is given. The possibilities of industrial blasting recording by the Karelian seismic network at various distances from the epicenters are shown. The analysis of the intensity and temporal dynamics of blasting operations in open pits was carried out. That made it possible to assess exposure stability, to develop the main criteria of the impact generated by blasting operations on the geological environment, as well as to provide a foundation for the long-term assessment of regional geodynamics. Induced seismicity prevails in the territory of Karelia, and the main contribution is made by blasting. The question of identifying induced seismic events and separating them from earthquakes is still topical. The plotted graphs show the dependence of the increase in the seismic event magnitude on the total charge. The collected data are classified by open pits and by the type of explosives. A few assumptions were made concerning the intensity of blasting operations. An approach to reducing the negative seismic impact of industrial explosions is presented. Some suggestions are made for the short-term and promising trends in advancement and application of seismic monitoring to assess seismic impact of explosions.

Keywords: blasting operations, geodynamics, magnitude, total charge, induced seismicity, industrial safety, seismic monitoring, short-delay blasting, Karelian craton.
For citation:

Lebedev A. A. Intensity and nature of seismic impact of Kostomuksha GOK. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):142—151. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_142.


The study was carried out in the framework of the state contract with the Institute of Geology, Karelian Research Center, Russian Academy of Sciences, Topic No. AAAA-A18-118020290086-1.

Issue number: 5
Year: 2021
Page number: 142-151
ISBN: 0236-1493
UDK: 550.348 (470.22)
DOI: 10.25018/0236_1493_2021_51_0_142
Article receipt date: 27.01.2021
Date of review receipt: 24.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Lebedev A. A., senior geophysicist,; ORCID: https: //, The Institute of Geology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia.

For contacts:

1. Adushkin V. V. et al. Vzryvy i zemletryaseniya na territorii Evropejskoj chasti Rossii [Explosions and earthquakes in the European part of Russia]. Moscow, GЕОS, 2013. 360 p. [In Russ.]

2. Gorkovets V.Ya. et al. Kostomukshskij rudnyj rajon (geologiya, glubinnoe stroenie i minerageniya) [Kostomuksha ore area (geology, deep structure and mineralogeny)]. Petrozavodsk: Karelian Research Centre, RAS, 2015. 322 p. [In Russ.]

3. Eilu, P., Boyd, R., Hallberg, A., Korsakova, M., Krasotkin, S., Nurmi, P. A., Ripa, M., Stromov, V. & Tontti, M. 2012. Mining history of Fennoscandia. Geological Survey of Finland, Special Paper 53, 19—32.

4. Sharov N. V. Glubinnoe stroenie i sejsmichnost’ Karel’skogo regiona i ego obramleniya [Deep structure and seismicity of the Karelian region and its framing]. Petrozavodsk, Karelian Scientific Center RAS, 2004. 353 p. [In Russ.]

5. Zueva I. A., Lebedev A. A. Sejsmicheskij effekt promyshlennyh vzryvov Kostomukshskogo GOK [Seismic effect of industrial explosions of GOK Kostomuksha]. Vestnik MGTU (Proceedings of MGTU), 2020, V. 23. no. 1, pp. 22—28. DOI: 10.21443/1560—9278—2020—23—1-22—28 [In Russ.]

6. Baranov S. V., Karpinskij  V.  V.,  Lebedev  A.  A.,  Munirova  L.  M.,  Petrov S. I. Nepreryvnye nablyudeniya. Vostochnaya chast’ Baltijskogo shchita [Continuous observation. Eastern part of the Baltic shield]. Zemletryaseniya Rossii v 2018 godu (Earthquakes of Russia in 2018), Obninsk: FIC EGS RAS, 2020. pp. 111—113. [In Russ.]

7. The Institute of Seismology of the University of Helsinki. Seismic Bulletins. [Electronic resource]. Available at: http:. (accessed 24 December 2020)

8. Drukovannyj M. F. Metody upravleniya vzryvom na kar’erah [Blast control techniques in quarries]. Moscow: Nedra, 1973. 415 p. [In Russ.]

9. Suvorova N. I., Sharov N. V. O formirovanii sejsmicheskih kolebanij pri massovyh korotkozamedlennyh vzryvah [About the formation of seismic vibrations during mass shortdelayed explosions]. Sejsmicheskie i geodinamicheskie issledovaniya na severo-vostoke Baltijskogo shchita (Seismic and geodynamic studies in the north-east of the Baltic shield), Apatity: Kola branch of AN USSR, 1979. pp. 59—63. [In Russ.]

10. Kozyrev S. A., Usachev E. A. Occurrence of mining-induced seismicity during bulk blasts at the underground mines, “Apatit” JSC. Vestnik MGTU, 2014, V. 17, no. 2, pp. 238—245. [In Russ.]

11. Emanov A. F., Emanov A. A., Fateev A. V., Shevkunova E. V., Vorona U.Yu., Serezhnikov N. A. Sejsmicheskij effekt promyshlennyh vzryvov v Zapadnoj Sibiri i navedyonnaya sejsmichnost’ [Seismic effect of industrial explosions in Western Siberia and induced seismicity], Voprosy Inzhenernoi Seismologii (Problems of Engineering Seismology), 2018, Vol. 45, no. 4, pp. 5—24. DOI: 10.21455/VIS2018.4—1 [In Russ.]

12. Kutuzov B. N., Ekvist B. V. Effects of explosions using not electric initiation system. MIAB. Mining Inf. Anal. Bull. 2016, no. 2, pp. 219—224. [In Russ.]

13. Konurin A. I., Eremenko A. A., Filippov V. N. Assessment features for rock mass conditions under production blasting and geodynamic events. MIAB. Mining Inf. Anal. Bull. 2017, no. 7, pp. 153—160. DOI: 10.25018/0236—1493—2017—7-0—153—160 [In Russ.]

14. Kurlenya M. V., Eremenko A. A., Bashkov V. I. Vliyanie vzryvnyh rabot na sejsmicheskie i dinamicheskie yavleniya pri podzemnoj razrabotke rudnyh udaroopasnyh mestorozhdenij Sibiri [Effect of blasting on seismic activity and dynamic events in rockbursthazardous underground mines in Siberia]. Gornyj zhurnal (Mining Journal), 2015, no. 8, pp. 69—71. DOI: 10.17580/gzh.2015.08.14 [In Russ.]

15. Ataeva G., Gitterman Y., Shapira A. The ratio between corner frequencies of source spectra of Pand S-waves—a new discriminant between earthquakes and quarry blasts. Journal of Seismology. 2017. Vol. 21. pp. 209—220. DOI: 10.1007/s10950—016—9598—0

16. Han H., Jahed Armaghani D., Tarinejad R., Zhou J., Tahir M. Random Forest and Bayesian Network Techniques for Probabilistic Prediction of Flyrock Induced by Blasting in Quarry Sites. Natural Resources Research. 2020. Vol. 29. pp. 655—667. DOI: 10.1007/ s11053—019—09611—4

17. Kintner J. A., Ammon C. J., Homman K., Nyblade A. Precise Relative Magnitude and Relative Location Estimates of Low-Yield Industrial Blasts in Pennsylvania. Bulletin of the Seismological Society of America. 2020. Vol. 110. pp. 226—240. DOI: 10.1785/012019163

18. Gulia L. Detection of Quarry and Mine Blast Contamination in European Regional Catalogues. Natural Hazards. 2010. Vol. 53. pp. 229—249. DOI: 10.1007/s11069—009— 9426—8

19. Kortström J., Uski M., Tiira T. Automatic classification of seismic events within a regional seismograph network. Computers & Geosciences. 2016. Vol. 87. pp. 22—30. DOI: 10.1016/j.cageo.2015.11.006

20. Asming V. E., Kremeneckaya E. O., Vinogradov Yu.A., Evtyugina Z. A. Ispol’zovanie kriteriev identifikacii vzryvov i zemletryasenij dlya utochneniya ocenki sejsmicheskoj opasnosti regiona [Using the criteria for identifying explosions and earthquakes to refine the assessment of the seismic hazard of the region]. Vestnik MGTU (Proceedings of MGTU), 2010, V. 13. no. 4/2, pp. 998—1007. [In Russ.]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.