The nature and degree of fracturing of the rock mass of gold and silver deposits of Okhotsk-Chukchi volcanic belt on the example of Primorsky deposit

Authors: Kozlov V. S.

The relevance of the article is due to the construction and development of new gold and silver deposits in difficult engineering and geological conditions in the Far East. The article considers the fracturing parameters of the Primorsky gold and silver deposit, such as: the nature of the crack surface; orientation of the crack angles in the rock mass; type of mineral aggregate; modules of lumpiness and fracturing of the rock mass; assessment of structural disturbance of the rocks of the massif by the Dir method (RQD); coefficient and modulus of weakening zones. An assessment of the nature and degree of fracturing of the Primorsky deposit rock mass showed that tectonic cracks predominate, which is caused by regional factors. According to the mechanism of formation, these are separation cracks. The predominant surfaces of open cracks are wavy, rough. In general, 2 types of crack filler are allocated for the rock mass of the deposit: weakening the strength properties of the rock mass; strengthening the strength properties of the rock mass. It is established that the degree of fracturing of the rock mass of the deposit is extremely uneven. Thus, the influence of complex endogenous processes associated with the history of geological development and the formation of the deposit leads to the formation of individual engineering and geological conditions that determine the stability of the rock mass when it is opened by mining. 

Keywords: Okhotsk-Chukotka volcanic belt, engineering and geological conditions, gold and silver deposits, epithermal deposits, regional factors, zonal factors, Primorsky deposit, assessment of the nature and degree of fracturing, individual engineering and geological conditions.
For citation:

Kozlov V. S. The nature and degree of fracturing of the rock mass of gold and silver deposits of Okhotsk-Chukchi volcanic belt on the example of Primorsky deposit. MIAB. Mining Inf. Anal. Bull. 2022;(11-2):95-105. [In Russ]. DOI: 10.25018/0236_1493_2022_112_0_95.

Acknowledgements:

The work was carried out as part of the implementation of the Priority 2030 program, project manager Professor I.V. Abaturova.

Issue number: 11
Year: 2022
Page number: 95-105
ISBN: 0236-1493
UDK: 550.8
DOI: 10.25018/0236_1493_2022_112_0_95
Article receipt date: 16.06.2022
Date of review receipt: 01.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

V.S. Kozlov, Engineer, e-mail: mr.vkla@mail.ru, Ural State Mining University, 620144, Ekaterinburg, Russia, ORCID ID: 0000-0002-9435-957X.

 

For contacts:
Bibliography:

1. Abaturova I. V., Savintsev I. A., Storozhenko L. A., Nugmanova E. D., Kozlov V. S. The stages of studying the engineering and geological conditions of mineral deposits from exploration to development. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2020, no. 7, pp. 83—91. [In Russ]. DOI: 10.21440/0536-1028-2020-7-83-91.

2. Verbilo P. E., Trushko O. V. Assessment of the load-bearing capacity of inter-chamber pillars in a block mountain massif. News of the Tula state university. Sciences of Earth. 2018, no. 2, pp. 305—318. [In Russ].

3. Abaturova I. V., Storozhenko L. A., Savintsev I. A. Methodological bases for obtaining information on engineering and geological conditions of mineral deposits. Engineering and Mining Geophysics 2021. 2021, vol. 2021, pp. 1—6. DOI: 10.3997/2214-4609.202152136.

4. Abaturova I. V., Storozhenko L. A., Pisetsky V. B., Savintsev I. A. Use of geological and structural analysis in evaluating engineering and geological conditions of mineral deposits. Engineering and Mining Geophysics 2020. 2020, vol. 2020, pp. 1—9. DOI: 10.3997/2214-4609.202051096.

5. Korchak S. A., Abaturova I. V., Savintsev I. A., Storozhenko L. A. Methodology for studying the fracturing of rock massifs at different stages of the study of mineral deposits. Engineering and Mining Geophysics 2021. 2021, vol. 2021, pp. 1—11. DOI: 10.3997/2214-4609.202152066.

6. Korchak S. A., Savintsev I. A., Storozhenko L. A. Actualization of methods for studying the degree and nature of fracturing of rock massifs in deposits of solid minerals. Inzhenernaya i rudnaya geofizika 2020 [Engineering and ore geophysics 2020], Moscow, 2020, pp. 102. [In Russ]. DOI: 10.3997/2214-4609.202051128.

7. Lee D. S., Kang J. H. Geometric and kinematic characteristics of fracture system in the sancheong anorthosite complex, Korea. The Journal of the Petrological Society of Korea. 2016, vol. 25, no. 4, pp. 389—400. DOI: 10.7854/JPSK.2016.25.4.389.

8. Chen Z., Li X., Huang X., Jin Z. A method for estimating the rheological properties of fractured rock inside a shear zone. Pure and Applied Geophysics. 2022, vol. 179, no. 2, pp. 1—10. DOI: 10.1007/s00024-022-03007-x.

9. Li Y., Shen J., Cai W., Zhou X. Fractured formation evaluation by seismic attenuation derived from array acoustic log waves based on modified spectral ratio method and an extended Biot's poroelastic model. Journal of Petroleum Science and Engineering. 2022, vol. 209, article 109838. DOI: 10.1016/j.petrol.2021.109838.

10. Rats M. V. Chernyshev S. I. Treshchinovatost' i svoystva treshchinovatykh porod [Fracturing and properties of fractured rocks], Moscow, Nedra, 1980, 160 p.

11. Konstantinov M. M., Struzhkov S. F. Metallogeniya zolota i serebra Okhotsko-Chukotskogo vulkanogennogo poyasa [Metallogeny of gold and silver of the Okhotsk-Chukchi volcanic belt], Moscow, Nauchnyy mir, 2005, 320 p.

12. Akinin V. V., Miller E. L. Evolution of calc-alkaline magmas of the Okhotsk-Chukotka volcanogenic belt. Petrologiya. 2011, no. 3, pp. 249—290. [In Russ].

13. Kotlyar I. N., Rusakova T. B. Melovoy magmatizm i rudonosnost' Okhotsko-Chukotskoy oblasti: geologo-geokhronologicheskaya korelyatsiya [Cretaceous magmatism and ore content of the Okhotsk-Chukotka region: geological-geochronological correlation], Magadan, SVKNII DV RAN, 2004, 152 p.

14. Shilo N. A., Goncharov V. I., Al'shevskiy A. V., Vortsepnev V. V. Usloviya formirovaniya zolotogo orudeneniya v strukturakh Severo-Vostoka SSSR [Conditions for the formation of gold mineralization in the structures of the North-East of the USSR], Moscow, Nauka, 1988, 181 p.

15. Umitbaev R. B. Okhotsko-Chaunskaya metallogenicheskaya provintsiya (stroenie, rudonosnost', analogi) [Okhotsk-Chaunskaya metallogenic province (structure, ore content, analogs)], Moscow, Nauka, 1986, 287 p.

16. Xu S., Tang X. M., Chen M., Su Y. D., Qian Y. P., Sun D. Estimation of directional crack density and fluid properties from well logs in vertical wells. Geophysics. 2021, vol. 86, no. 4, pp. 113—124. DOI: 10.1190/geo2020-0710.1.

17. Korchak S. A., Abaturova I. V., Savintsev I. A. Kinematic fracture analysis as the main tool for predicting the mechanism of deformation of a rock mass. Engineering and Mining Geophysics 2020. 2020, vol. 2020, pp. 1—10. DOI: 10.3997/2214-4609.202051127.

18. Volkov A. V., Sidorov A. A., Thomson I. N., Alekseev V. Yu. On multistage epithermal mineralization. Doklady Akademii nauk. 2003, vol. 391, no. 2, pp. 219—222. [In Russ].

19. Sidorov A. A., Bely V. F., Volkov A. V., Savva N. E., Kolova E. E. Gold-silver bearing Okhotsk-Chukotka volcanogenic belt. Geologiya rudnykh mestorozhdeniy. 2009, vol. 51, no. 6, pp. 492—507. [In Russ].

20. Tagil’tsev, S.N., Panzhin A. A. Geomechanical regularities of horizontal and vertical deformations of the rock mass in the area of the Kachkanar iron ore deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 235—245. [In Russ]. DOI: 10.25018/0236-1493-2020-31-0-235-245.

21. Kim C. M., Han R., Kim J. S., Sohn Y. K., Jeong J. O., Jeong G. Y., Yi K. Fault zone processes during caldera collapse: Jangsan Caldera, Korea. Journal of Structural Geology. 2019, vol. 124, pp. 197—210. DOI: 10.1016/j.jsg.2019.05.002.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.