Geometrical approximation of borehole collapses to perform calibration of geomechanical model

One-dimensional geomechanical models are the useful tools for the borehole planning and design. The high-quality geomechanical modeling requires a lot of initial data, including the stress–strain behavior of rock mass, its elasticity and strength characteristics. Some of these data can be obtained from the model calibration with respect to actual borehole collapses. This article offers two methods of borehole wall collapse approximation using geometrical figures of a triangle and an ellipse. The geometrical approximation of borehole collapse makes it possible to limit the collapse sizes and to correlate the angle and the depth of the collapse. The resultant limitations and correlations enable calibration of one-dimensional geomechanical models using the micro-scanning data, as well as more easily accessible caliper logs and section caliper logs per boreholes, which essentially reduces requirements imposed on completeness of input data for adequate geomechanical modeling. For the correct uses of the triangular and elliptical approximation of borehole collapses, it is necessary to preliminary estimate the shape of the collapse using the data of an acoustic micro-scanning test, and to select representative parameters of approximation to be used in boreholes in case of the lacking micro-scanning data. When the micro-scanning data are totally absent, the average values are proposed for the approximation and the limit values are offered for the uncertainty assessment.

Keywords: collapse, borehole, geometrical approximation, collapse shape, drilling, geomechanics, one-dimensional modeling.
For citation:

Konoshonkin D. V., Rukavishnikov V. S. Geometrical approximation of borehole collapses to perform calibration of geomechanical model. MIAB. Mining Inf. Anal. Bull. 2021;(12):58-72. [In Russ]. DOI: 10.25018/0236_1493_2021_12_0_58.

Acknowledgements:
Issue number: 12
Year: 2021
Page number: 58-72
ISBN: 0236-1493
UDK: 550.822
DOI: 10.25018/0236_1493_2021_12_0_58
Article receipt date: 27.07.2021
Date of review receipt: 05.08.2021
Date of the editorial board′s decision on the article′s publishing: 10.11.2021
About authors:

D.V. Konoshonkin1, Engineer, e-mail: KonoshonkinDV@hw.tpu.ru, http://orcid.org/0000-0002-9939-2301,
V.S. Rukavishnikov1, PhD, Assistant Professor, Deputy Director of the School of Natural Resources, e-mail: RukavishnikovVS@hw.tpu.ru, http://orcid.org/0000-0001-7063-9756,
1 National Research Tomsk Polytechnic University, 634050, Tomsk, Russia.

 

For contacts:

D.V. Konoshonkin, e-mail: KonoshonkinDV@hw.tpu.ru.

Bibliography:

1. Driban V. A. Stability of mines in structurally heterogeneous massifs. MIAB. Mining Inf. Anal. Bull. 2008, no. 9, pp. 305–312. [In Russ].

2. Kurlenya M. V., Baryshnikov V. D., Gakhova L. N. Experimental and analytical method for assessing stability of stopes. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2012, no. 4, pp. 20–29. [In Russ].

3. Vashkevich A. A., Zhukov V. V., Ovcharenko Yu. V., Bochkov A. S. Development of integrated geomechanical modeling approaches at PJSC Gazprom Neft. Neftyanoe Khozyaistvo. 2016, no. 12, pp. 16–19. [In Russ].

4. Davletova A. R. Kireev V. V., Knutova S. R., Pestrikov A. V., Fedorov A. I. Development of corporate geomechanics simulator for wellbore stability modeling. Neftyanoe Khozyaistvo. 2018, no. 6, pp. 88–92. [In Russ]. DOI: 10.24887/0028-2448-2018-6-88-92.

5. Kozyrev A. A., Savchenko S. N., Panin V. I., Semenova I.E., Rybin V. V., Fedotova Yu. V., Kozyrev S. A. Geomekhanicheskiye protsessy v geologicheskoy srede gornotekhnicheskikh sistem i upravleniye geodinamicheskimi riskami [Geomechanical processes in the geological environment of mining systems and management of geodynamic risks], Apatity, KNTs RAN, 2019. 431 с. DOI: 10.37614/978.5.91137.391.7.

6. Lukin S. V., Esipov S. V., Zhukov V. V., Ovcharenko Yu. V., Khomutov A. Yu., Shevchuk T. N., Suslyakov I. V. Borehole stability prediction to avoid drilling failures. Neftyanoe Khozyaistvo. 2016, no. 6, pp. 70–73. [In Russ].

7. Moore J. C., Chang C., Mcneill L., Thu M. K., Yamada Y., Huftile G. Growth of borehole breakouts with time after drilling: Implications for state of stress, NanTroSEIZE transect, SW Japan. Geochemistry Geophysics Geosystems. 2012, vol. 12, no. 4. DOI: 10.1029/2010GC003417.

8. Guerra C., Fischer K., Henk A. Stress prediction using 1D and 3D geomechanical models of a tight gas reservoir. A case study from the Lower Magdalena Valley Basin, Colombia. Geomechanics for Energy and the Environment. 2019, vol. 19, article 100113. DOI: 10.1016/j. gete.2019.01.002

9. Salimov M., Konoshonkin D. The ratios of the main stresses in the Wellbore in carbonate rocks. Conference Proceedings. Saint Petersburg 2018: Innovations in Geosciences; Time for Breakthrough. 2018, vol. 2018. pp. 1–5. DOI: 10.3997/2214-4609.201800124.

10. Tashkinov V., Konoshonkin D. The rock strength properties determination of the jurassic formation sandstones by updating empirical relations for mechanical earth model construction. Conference Proceedings. Saint Petersburg 2018: Innovations in Geosciences; Time for Breakthrough. 2018, vol. 2018. pp. 1–6. DOI: 10.3997/2214-4609.201800162.

11. Zoback M. D., Moos D., Mastin L., Anderson R. N. Well bore breakouts and in situ stress. Journal of Geophysical Research Atmospheres. 1985, vol. 90, pp. 5523–5530. DOI: 10.1029/ JB090iB07p05523.

12. Haimson B. Micromechanisms of borehole instability leading to breakouts in rocks. International Journal of Rock Mechanics and Mining Sciences. 2007, vol. 44, no. 2. pp. 157–173. DOI: 10.1016/j.ijrmms.2006.06.002.

13. Moos D., Barton C. A., Willson S. Impact of rock properties on the relationship between wellbore breakout width and depth. Proceedings of the 1st Canada-US Rock Mechanics Symposium. Rock Mechanics: Meeting Society’s Challenges and Demands. 2007, vol. 2. pp. 1677– 1683. DOI: 10.1201/noe0415444019-c211.

14. Zoughy P., Molladavoodi H., Nikoosokhan S., Fatahi Mehraban L. Numerical modeling of logged wellbore breakouts using cohesion-weakening frictional-strengthening models. Journal of Petroleum Science and Engineering. 2021, vol. 198, no. 4, article 108206. DOI: 10.1016/j.petrol.2020.108206.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.