Geomechanical validation of borehole stress-relief method in rockburst-hazardous rock mass

The numerical stress–strain modeling has revealed the natural and induced stress patterns in the rockburst-hazardous rock mass of the Nikolaevsk polymetallic deposit. Deeplevel mining induces higher stress concentrations in the roof and pillars in developing entries in the vicinity of stoping, and stress-relief zones in the sidewalls of the entries and stopes. With a view to reducing the rockburst hazard in the highest-stress areas, the borehole stress-relief method is validated and the borehole pattern design (diameter and spacing of boreholes) is optimized to ensure the maximum relaxation in the level pillars. It is found that in the conditions of the Nikolaevsk deposit, the stress level in rock mass surrounding the excavated stopes is governed, first of all, by the depth of the stope excavation, by the angle between the stope and the directions of the principal stresses, and by the type of rocks. The use of the resultant quantitative relationship between the stoping depth, orientation of the stopes relative to the principal stresses and the stress-relief drilling pattern makes it possible to ensure safe and efficient mining conditions.

Keywords: rockburst hazard, underground mining, rock mass, stress–strain behavior, pillar, numerical modeling, borehole stress-relief method, ground control.
For citation:

Rasskazov I. Yu., Sidlyar A. V., Potapchuk M. I., Miroshnikov V. I. Geomechanical validation of borehole stress-relief method in rockburst-hazardous rock mass. MIAB. Mining Inf. Anal. Bull. 2023;(5):5-17. [In Russ]. DOI: 10.25018/0236_1493_2023_5_0_5.

Acknowledgements:

The study was carried out using the scientific equipment of the SharedUse Center for Scientific Evidence Processing and Storage at the Far East Branch of the Russian Academy of Sciences, supported by the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 075-15-2021-663.

Issue number: 5
Year: 2023
Page number: 5-17
ISBN: 0236-1493
UDK: 622.831.32
DOI: 10.25018/0236_1493_2023_5_0_5
Article receipt date: 09.08.2022
Date of review receipt: 17.02.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

I.Yu. Rasskazov, Dr. Sci (Eng.), Corresponding Member of Russian Academy of Sciences, Director, Khabarovsk Federal Research Center of Far Eastern branch of Russian Academy of Sciences, 680000, Khabarovsk, Russia, e-mail: rasskazov@igd.khv.ru,
A.V. Sidlyar1, Cand. Sci. (Eng.), Researcher, e-mail: alex-igd@mail.ru, 
M.I. Potapchuk1, Cand. Sci. (Eng.), Leading Researcher, e-mail: alex-igd@mail.ru,
V.I. Miroshnikov1, Cand. Sci. (Eng.), Senior Researcher, e-mail: mirosh19@bk.ru,
1 Mining Institute, Far Eastern Branch of Russian Academy of Sciences, 680000, Khabarovsk, Russia.

 

For contacts:

A.V. Sidlyar, e-mail: alex-igd@mail.ru.

Bibliography:

1. Simser B. P. Rock burst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11, no. 5, pp. 1036—1043. DOI: 10.1016/j. jrmge.2019.07.005.

2. Keneti A., Sainsbury B. Review of published rockburst events and their contributing factors. Engineering Geology. 2018, vol. 246, pp. 361—373. DOI: 10.1016/j.enggeo.2018.10.005 ENGEO 4964.

3. Jun Wang, Apel D. B., Yuanyuan Pu, Hall R., Chong Wei, Sepehri M. Numerical modeling for rockbursts. A state-of-the-art review. Journal of Rock Mechanics and Geotechnical Engineering. 2021, vol. 13, pp. 457—478. DOI: 10.1016/j.jrmge.2020.09.011.

4. He Shengquan, Tuo Chen, Isaac Vennes, Xue-qiu He, Dazhao Song, Jianqiang Chen, Mitri H. S. Dynamic modelling of seismic wave propagation due to a remote seismic source: A case study. Rock Mechanics and Rock Engineering. 2020, vol. 53, pp. 5177—5201. DOI: 10.1007/ s00603-020-02217-w.

5. Rasskazov I. Yu. Kontrol' i upravlenie gornym davleniem na rudnikakh Dal'nevostochnogo regiona [Control and management of rock pressure at the mines of the Far East region], Moscow, Izd-vo «Gornaya kniga», 2008, 329 p.

6. Rasskazov I. Yu., Kursakin G. A., Potapchuk M. I., Miroshnikov V. I., Freidin A. M., Osadchiy S. P. Geomechanical assessment of conditions for the development of deep horizons of the Yuzhnoye polymetallic deposit. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2012, no. 5, pp. 125—134. [In Russ].

7. Rasskazov I. Yu., Saksin B. G., Usikov V. I., Potapchuk M. I. Geodynamic state of the rock massif of the Nikolaevsk polymetallic deposit and features of rockburst hazard manifestation during its development. Gornyi Zhurnal. 2016, no. 12, pp. 13—19. [In Russ]. DOI: 10.17580/ gzh.2016.12.03.

8. Kozyrev A. A., Lukichev S. V., Nagovitsyn O. V., Semenova I. E. Geomechanical and mining-technological modeling as a means of improving the safety of mining deposits of solid minerals. MIAB. Mining Inf. Anal. Bull. 2015, no. 4, pp. 73—83. [In Russ].

9. Wang Jianchao, Guo-qing Chen, Xiao Yaxun, Shaojun Li, Yi Chen, Zhibin Qiao Effect of structural planes on rockburst distribution: Case study of a deep tunnel in Southwest China. Engineering Geology. 2021, vol. 292, artcle 106250. DOI: 10.1016/j.enggeo.2021.106250.

10. Semenova I. E., Avetisyan I. M., Zemtsovsky A. V. Geomechanical modeling of deeplevel mining under difficult geological and geodynamic conditions. MIAB. Mining Inf. Anal. Bull. 2018, no. 12, pp. 65—73. [In Russ]. DOI: 10.25018/0236-1493-2018-12-0-65-73.

11. Zhirnov A. A., Shaposhnik Yu. N., Nikolsky A. M., Neverov S. A. Geomechanical assessment of the mining situation at the Irtysh deposit and substantiation of development system parameters. Gornyi Zhurnal. 2018, no. 1, pp. 48—53. [In Russ]. DOI: 10.17580/gzh.2018.01.08.

12. Zoteev O. V. Simulation of the mode of deformation of a rock mass by numerical methods. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2003, no. 5, pp. 108—115. [In Russ].

13. Baryshnikov V. D., Pirlya K. V., Shumsky I. P. Results of studies of the physical and mechanical properties of rocks of the Nikolaev deposit. Fizicheskie svoystva gornykh porod [Physical Properties of Rocks], Novosibirsk, IGD SO AN SSSR, 1982, pp. 131—135.

14. A.V. Sidlyar, M.I. Potapchuk, A.A. Tereshkin Geomechanical confirmation of safe mining at Nikolaevskoye polymetallic deposit, which is rock bursts dangerous. MIAB. Mining Inf. Anal. Bull. 2017, no. 7, pp. 184—194. [In Russ]. DOI: 10.25018/0236-1493-2017-7-0-184-194.

15. Petukhov I. M., Egorov P. V., Vinokur B. Sh. Predotvrashchenie gornykh udarov na rudnikakh [Prevention of rock bursts at mines], Moscow, Nedra, 1984, 230 p.

16. Marysyuk V. P., Korneichuk V. I., Fender S. N., Andreev A. A., Koretsky A. S. Improvement of massif relief methods by large-diameter wells when mining sulfide ores. Gornyi Zhurnal. 2014, no. 4, pp. 15—18. [In Russ].

17. Polukhin V. A., Skoblikov V. V. Method for increasing the stability of excavation and main mine workings. Vestnik of safety in coal mining scientific center. 2008, no. 2, pp. 113—117. [In Russ].

18. Zhu Qi-hu, Lu Wen-bo, Sun Jin-shan, Chen Ming Prevention of rockburst by guide holes based on numerical simulations. Mining Science and Technology. 2009, vol. 19, pp. 346—351.

19. Karpov G. N., Kovalski E. R., Smychnik A. D. Determination of rock destressing parameters at the ends of disassembling room. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 95—107. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-95-107.

20. Kazikaev D. M. Geomekhanika podzemnoy razrabotki rud [Geomechanics of underground mining of ores], Moscow, Izd-vo MGGU, 2009, 542 p

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.