Geochemical criteria for the potential ore content of igneous and metamorphic rocks

For more than a hundred years, discussions have been held about the possibility of extracting genetic information from empirical distribution curves of various components in rocks. Also, the relevance of the question is determined by the requirement to develop new techniques to increase the volume of geological and genetic information extracted from the growing flow of analytical data. The successful solution of a number of topical problems of geology, first of all, the possibility of restoring the geochemical orientation of petrogenic and ore-bearing processes, and assessing the potential ore content of crystalline rocks, is closely linked with the physical and mathematical justification of the distribution laws. Based on this, the article discusses the methodology for assessing the potential ore content of igneous and metamorphic rocks, which is based on the results of mathematical modeling of the geochemical dynamics of petrogenic processes. Earlier, the authors proved that when obtaining regular distribution curves of certain chemical elements, a modal value can be given a certain thermodynamic meaning. Empirical distributions can be considered as a characteristic of the probabilistic state of systems, and modal values in them — as the most probable (optimal state) to which systems aspire. Some features of analytical studies that are required for the use of mathematical modeling and subsequent reliable interpretation of the results are indicated.

Keywords: geochemistry, igneous rocks, metamorphic rocks, ore bearing, mathematical modeling, distribution curves, bimodal distribution, empirical distribution curve.
For citation:

Panyak S. G., Bobina T. S., Boltyrov V. B. Geochemical criteria for the potential ore content of igneous and metamorphic rocks. MIAB. Mining Inf. Anal. Bull. 2022;(11-2):85-94. [In Russ]. DOI: 10.25018/0236_1493_2022_112_0_85.

Acknowledgements:
Issue number: 11
Year: 2022
Page number: 85-94
ISBN: 0236-1493
UDK: 557.03
DOI: 10.25018/0236_1493_2022_112_0_85
Article receipt date: 16.06.2022
Date of review receipt: 01.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

S.G. Panyak1, Dr. Sci. (Geol. Mineral.), Professor, e-mail: panjakst@gmail.com, ORCID ID: 0000-0001-8436-639X,
T.S. Bobina1, Senior Lecturer, e-mail: tanyashka1993@mail.ru, ORCID ID: 0000-0001-7790-9907,
V.B. Boltyrov1, Dr. Sci. (Geol. Mineral.), Professor, e-mail: boltyrov34@mail.ru, ORCID ID: 0000-0001-5564-0054,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

T.S. Bobina, e-mail: tanyashka1993@mail.ru.

Bibliography:

1. Efremov S. V., Dril S. I., Goryachev N. A., Levitskiy I. V. Ore potential of granitic rocks of the Gargan Block, Eastern Sayan. Geologiya rudnykh mestorozhdeniy. 2019, vol. 61, no. 4, pp. 61—71. [In Russ]. DOI: 10.31857/S0016-777061461-71.

2. Filatov E. I., Filatova L. K. Geological and geochemical specialization of ore-bearing formations. Otechestvennaya geologiya. 2021, no. 3-4, pp. 48—51. [In Russ]. DOI: 10.47765/08697175-2021-10021.

3. Miroshnikova L. K., Mezentsev A. Yu., Semenyakina N. V., Kotel'nikova E. M. Geological and geochemical signs and criteria of potential mineralization in the Tangaralakh intrusion. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 115—130. [In Russ]. DOI: 10.25018/0236-14932020-6-0-115-130.

4. Khayrtdinova L., Khasanov R., Badrutdinov O. Mineralogical and geochemical criteria for the stratigraphic dismemberment of metamorphic complexes of the crystalline basement of the Tatar arch (Russian Federation). 18th International Multidisciplinary Scientific GeoConference SGEM 2018. 2018, vol. 18, book 1.1. DOI: 10.5593/sgem2018/1.1/S01.033.

5. An appraisal of crystalline rocks potencial ore-bearing according to mathematical modelling data. Izvestiya Ural'skoy gosudarstvennoy gorno-geologicheskoy akademii. Seriya: geologiya i geofizika. 2002, no. 15, pp. 7—12. [In Russ].

6. Lebedeva I. A., Panyak S. G. Methodological assessment of uncertainty in forecasting hydrocarbon reserves of the North Varieganskoye field (Western Siberia). News of the Ural State Mining University. 2021, no. 1(61), pp. 46—54. [In Russ]. DOI: 10.21440/2307-2091-2021-146-54.

7. Bobina T. S., Boltyrov V. B., Panyak S. G. Use of geochemical prospecting and evaluation methods in the potentially oil-rich territories. Engineering and Mining Geophysics 2018. 2018, vol. 2018, pp. 1—5. DOI: 10.3997/2214-4609.201800481.

8. Efremova S. V., Stafeev K. G. Petrokhimicheskie metody issledovaniy gornykh porod [Petrochemical methods of rock research], Moscow, Nedra, 1985, 511 p.

9. Ovchinnikov L. N. Sources of ore matter of endogenous deposits and reliability of their establishment. Istochniki rudnogo veshchestva endogennykh mestorozhdeniy [Sources of ore matter of endogenous deposits and reliability of their establishment], Moscow, Nauka, 1976, pp. 44—52.

10. Korzhinskiy D. S. The concept of geochemical mobility of elements. Zapiski VMO. 1942, vol. 71, no. 3-4, pp. 160—168.

11. Qingjie G., Ningqiang L., Xuan W. Using regional geochemical survey data to trace anomalous samples through geochemical genes: The Tieshanlong tungsten deposit area (Southeastern China) case study. Journal of Geochemical Exploration. 2020, vol. 219, article 106637. DOI: 10.1016/j.gexplo.2020.106637.

12. Shelby T., Frank K., Mark D. Mineralogical thallium geochemistry and isotope variations from igneous, metamorphic, and metasomatic systems. Geochimica et Cosmochimica Acta. 2018, vol. 243, pp. 42—65. DOI: 10.1016/j.gca.2018.09.019.

13. Petrov O. V. REE+Y, Hf, U, Th, and Pb distribution in zircon as an indicator for fertility of magmatic rocks of the Malmyzh and Pony Cu-Au-porphyry ore fields (Trans-Amur Region, Russian Far East). Regional Geology and Metallogeny. 2020, no. 84, pp. 55—70. [In Russ].

14. Rykus M. V., Snachev V. I. About the nature of acid rocks of the ore-host complex of the akzharsky ore field (South Urals). Neftegazovoe delo. 2022, vol. 20, no. 1, pp. 6—15. [In Russ]. DOI: 10.17122/ngdelo-2022-1-6-15.

15. Okrugin A. V., Zemnukhov A. L., Zhuravlev A. I. Copper-nickel sulfide mineral occurrence in dolerites of the eastern slope of the Anabar shield. Arctic and Subarctic Natural Resources. 2021, vol. 26, no. 4, pp. 16—28. [In Russ]. DOI: 10.31242/2618-9712-2021-26-4-16-28.

16. Chen Li, Manlan Niu, Xiaoyu Yuan, Zhen Yan, Qi Wu, Xiucai Li, Yi Sun Geochemical signals of coexisting magma mixing and fractional crystallization processes in the arc setting: Case study of Wulan intrusive suite in the NE Tibet Plateau. Lithos. 2022, vol. 432—433, article 106914. DOI: 10.1016/j.lithos.2022.106914.

17. Chen-Yang Sun, Peter A. Cawood, Wen-Liang Xu, Xiao-Ming Zhang, Jie Tang, Yu Li, Zhong-Xing Sun, Ting Xu In situ geochemical composition of apatite in granitoids from the eastern Central Asian Orogenic Belt. A window into petrogenesis. Geochimica et Cosmochimica Acta. 2022, vol. 317, pp. 552—573. DOI: 10.1016/j.gca.2021.10.028.

18. Clemens J. D., Helps P. A., Stevens G., Petford N. Origins and scales of compositional variations in crustally derived granitic rocks: the example of the dartmoor pluton in the cornubian batholith of Southwest Britain. The Journal of Geology. 2021, vol. 129, no. 2. DOI: 10.1086/714174.

19. Cornet J., Rene D. Implementation of trace element behaviour in the numerical modelling of magmatic processes. Durham theses, Durham University. Available at Durham E-Theses, 2018. Online: http://etheses.dur.ac.uk/12534/

20. Huang G., Palin R., Wang D., Guo J. Open-system fractional melting of Archean basalts: implications for tonalite—trondhjemite—granodiorite (TTG) magma genesis. Contributions to Mineralogy and Petrology. 2020, vol. 175, no. 102. DOI: 10.1007/s00410-020-01742-9.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.