Geophysical survey of asbestos pit wall

The article describes the use of geophysical methods to obtain the data on physical properties of rocks in pit wall rock mass toward technological optimization of drilling and blasting operations. The case-study of 2D and 3D electrical resistivity tomography, areal electrical geophysics and seismic exploration is presented. The data are obtained from field measurements of the natural electrical resistances in pit wall rock mass, induced polarizations equivalent to the frequency dispersion of rock conductivity as well as P-wave and S-wave velocities. Then, the obtained values are processed and interpreted using digital filtering and computer modeling. The strength of rock mass enclosing open pit chrysotile asbestos mine is calculated. The modern digital methods and algorithms commonly used worldwide are chosen for processing and interpretation of the obtained values. The physical properties of rocks are estimated from the comparison of a priori geological data with the values of the specific electrical resistance and elastic wave velocities. On this basis, The Young modulus values are calculated, which characterize the pit wall rock mass strength.

Keywords: geophysical survey, engineering geophysics, 3D electrical resistivity tomography, 2D electrical resistivity tomography, electrical geophysics, induced polarization, seismic exploration, seismic refraction method, seismic tomography, asbestos, open pit mine, drilling and blasting.
For citation:

Zuev P. I., Grigoriev D. V., Vedernikov A. S. Geophysical survey of asbestos pit wall. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):131—141.[In Russ]. DOI: 10.25018/0236_1493_2021_51_0_131.



The study was carried out under State Contract No. 075-00581-19-00, Topic No. 0405-2019-0007.

Issue number: 5
Year: 2021
Page number: 131-141
ISBN: 0236-1493
UDK: 622.012.3:550.834
DOI: 10.25018/0236_1493_2021_51_0_131
Article receipt date: 16.12.2020
Date of review receipt: 26.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Zuev P. I.1, researcher, Institute of mining,;
Grigoriev D. V.1, researcher, Institute of mining,;
Vedernikov A. S., researcher,;
1 Institute of Mining of Ural branch of RAS, Ekaterinburg, Russia.


For contacts:

1. Vedernikov A., Zuev P., Grigoriev D. Geophysical surveys of rock mass status of iron ore deposit with combined deep opencast mining zone. E3S Web of Conferences 2020, Vol. 177, no. 02006, DOI https:.

2. Zhukov A. A., Penetration, A. M., And Pushkareva, I. Yu., Tsarev R. I. Experience in using a complex of geophysical methods to identify karst cavities in potash mine dumps. Scientific and Technical journal. MIAB. Mining Inf. Anal. Bull. 2015. no. 5. pp. 120—130 [In Russ]

3. What is chrysotile? available at: https:., 2021 [In Russ]

4. Chalikakis, K., Plagnes, V., Guerin, R. et al. Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeology Journal 19, 1169 (2011) doi:10.1007/ s10040—011—0746-x

5. Óscar Pueyo Anchuela, Aránzazu Luzón, Héctor Gil Garbi, Antonio Pérez, Andrés Pocoví Juan, María Asunción Soriano, Combination of electromagnetic, geophysical methods and sedimentological studies for the development of 3D models in alluvial sediments affected by karst (Ebro Basin, NE Spain), Journal of Applied Geophysics, Volume 102, 2014, Pages 81—95, ISSN 0926—9851, https:.

6. F. J. Martínez-Moreno, J. Galindo-Zaldívar, A. Pedrera, T. Teixido, P. Ruano, J. A. Peña, L. González-Castillo, A. Ruiz-Constán, M. López-Chicano, W. Martín-Rosales, Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain), Journal of Applied Geophysics, Volume 107, 2014, Pages 149—162, ISSN 0926—9851, https:.

7. S. C. Li, Z. Q. Zhou, Z. H. Ye, L. P. Li, Q. Q. Zhang, Z. H. Xu, Comprehensive geophysical prediction and treatment measures of karst caves in deep buried tunnel, Journal of Applied Geophysics, Volume 116, 2015, Pages 247—257, ISSN 0926—9851, https:. doi. org/10.1016/j.jappgeo.2015.03.019

8. Grigoriev D. V., Vedernikov A. S. Results of using 3d-electrotomography to search for karst voids in salt dump conditions. Problemy nedropolzovania. 2019. no. 4 (23). Pp. 137—143. DOI: 10.25635/2313—1586.2019.04.137 [In Russ]

9. Loke M. H. Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Res2dinv 3.5 Software. 2004

10. Ronczka, M., Hellman, K., Günther, T., Wisén, R., Dahlin, T., Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory, Solid Earth, 8, 671—682, 2017, https:.—671—2017

11. Vedernikov A. S., Grigoriev D. V., Zuev P. I. Experience in conducting geophysical surveys during seismic micro-zoning of territories of particularly important objects. XV Uralskaya molodezhnaya nauchnaya shkola po geofizike [XV Ural Youth Scientific School of Geophysics]. Ekaterinburg, 2016. p. 056—060 [In Russ]

12. Zamyatin A. L. Study of the state of the rock mass to ensure the stability of the side of the quarry. Sbornik dokladov VII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii v ramkakh Ural’skoi gornopromyshlennoi dekady. Ekaterinburg, 2018. pp. 325—329 [In Russ]

13. Ryazantsev P. A. Geophysical methods of raw material control in the deposits of facing stone. Scientific and technical journal. MIAB. Mining Inf. Anal. Bull. 2018. no. 4. S. 149—158 DOI: 10.25018/0236—1493—2018—4-0—149—158 [In Russ]

14. Zhou W., Lei M. Summary editorial for karst hydrogeology: advances in karst collapse studies. Environmental Earth Sciences 77, 803 (2018) doi:10.1007/s12665—018— 7990—5

15. Samgyu Park, Myeong-Jong Yi, Jung-Ho Kim, Seung Wook Shin. Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea. Journal of Applied Geophysics, Vol. 135. DOI: 10.1016/j.jappgeo.2016.07.004

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.