Physicochemical and process properties of galena, sphalerite and carbonaceous material of complex low-sulphide Pb–Zn ore

Particles of galena, sphalerite and carbonaceous material extracted from complex low-sulphide Pb–Zn ore, belonging to a size fraction specific to faster flotation rate are analyzed. Using semi-adiabatic calorimetry, the heat of wetting is measured in powders composed of a size fraction –74+44 µm. The heat of wetting can be a quantitative measure of wettability. A reference sample was graphite size fraction, which showed the value см Hav = 0.15±0.03 J/m2. It is found that carbonaceous material (CM) possesses the least heat of wetting (0.19±0.04 J/m2), which proves the pronounced natural hydrophobicity of the material. Galena and sphalerite demonstrate higher heats of wetting (1.67±0.19 J/m2 and 1.75±0.35 J/m2, respectively), which conforms with the moderate hydrophilicity of the minerals. Using the Hammett method, the acid–base properties of active centers on the surface of the test samples are investigated. The surface of CM is dominated by Brønsted bases and Lewis acids and bases, which conditions the high sorption capacity of the material. Sulphides and CM demonstrate the comparable floatability—extraction of fractions in froth flotation for 5 min is: PbS_butX 96±1.5%, PbS_DT 91±1.5%; ZnS_butX 79±1.5%, ZnS_DТ 93±1.5% CM_butX 84±1.5% and CM_DT 83±1.5%. Galena and sphalerite have higher constants of flotation rate (1.0–2.5 min–1) than CM (0.6 min–1). Thus, the found similar physicochemical characteristics of surfaces of the test samples explains the low selectivity of flotation of galena, sphalerite and CM, and the difficulties involved in development of effective reagent regimes of flotation for complex sulphide ore with the increased content of carboniferous matter.

Keywords: flotation, hydrophobicity, active centers, galena, sphalerite, carbonaceous material, microcalorimetry, heat of wetting.
For citation:

Yergeshev A. R., Karmeyeva M. A., Yergesheva N. D., Tokpayev R. R., Ignatkina V. A. Physicochemical and process properties of galena, sphalerite and carbonaceous material of complex low-sulphide Pb–Zn ore. MIAB. Mining Inf. Anal. Bull. 2025;(9):163-181. [In Russ]. DOI: 10.25018/0236_1493_2025_9_0_163.

Acknowledgements:

The study was supported by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan, Grant No. AR19680419.

Issue number: 9
Year: 2025
Page number: 163-181
ISBN: 0236-1493
UDK: 622.7.017.24
DOI: 10.25018/0236_1493_2025_9_0_163
Article receipt date: 20.05.2025
Date of review receipt: 04.06.2025
Date of the editorial board′s decision on the article′s publishing: 10.08.2025
About authors:

A.R. Yergeshev¹, Graduate Student, e-mail: akim9797@mail.ru,
M.A. Karmeyeva¹, Student, e-mail: m2001044@edu.misis.ru,
N.D. Yergesheva¹, Graduate Student, e-mail: nazymarzu.zharolla@mail.ru,
R.R. Tokpayev, Associate Professor, Leading Researcher, Center for Physicochemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan, e-mail: rustamtokpaev@mail.ru,
V.A. Ignatkina¹, Dr. Sci. (Eng.), Professor, e-mail: woda@mail.ru,
¹ NUST MISIS, 119049, Moscow, Russia.

 

For contacts:

A.R. Yergeshev, e-mail: akim9797@mail.ru.

Bibliography:

1. Alghunaim A., Kirdponpattara S., Newby B. Z. Techniques for determining contact angle and wettability of powders. Powder Technology. 2016, vol. 287, pp. 201—215. DOI: 10.1016/j.powtec.2015.10.002.

2. Chau T. T. A review of techniques for measurement of contact angles and their applicability on mineral surfaces. Minerals Engineering. 2009, vol. 22, no. 3, pp. 213—219. DOI: 10.1016/j. mineng.2008.07.009.

3. Denoyel R., Beurroies I., Lefevre B. Thermodynamics of wetting: information brought by microcalorimetry. Journal of Petroleum Science and Engineering. 2004, vol. 45, no. 3-4, pp. 203—212. DOI: 10.1016/j.petrol.2004.07.003.

4. Taguta J., O’Connor C. T., McFadzean B. The relationship between enthalpy of immersion and flotation response. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018, vol. 558, pp. 263—270. DOI: 10.1016/j.colsurfa.2018.08.059.

5. O'Connor C. T., Taguta J., McFadzean B. A review of the use of microcalorimetry to determine the enthalpies of immersion and adsorption on various minerals and their relationship to flotation performance. Minerals Engineering. 2024, vol. 207, article 108552.

6. Magudu A., O’Connor C. T., Geldenhuys S., McFadzean B. Decoupling heats of immersion and dissolution of mineral powders in solution to assess wettability. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024, vol. 703, article 135371.

7. Zimmermann R., Wolf G., Schneider H. A. Calorimetric measurements of the heat of solution and immersion of minerals in water using a new calorimetric vessel. Colloids and Surfaces. 1987, vol. 22, no. 1, pp. 1—7.

8. Douillard J. M., Zajac J., Malandrini H., Clauss F. Contact angle and film pressure: study of a talc surface. Journal of Colloid and Interface Science. 2002, vol. 255, no. 2, pp. 341—351. DOI: 10.1006/JCIS.2002.8611.

9. Grano S. R., Cnossen H., Skinner W., Prestidge C. A., Ralston J. Surface modifications in the chalcopyrite-sulphite ion system, II. Dithiophosphate collector adsorption study. International Journal of Mineral Processing. 1997, vol. 50, no. 1-2, pp. 27—45.

10. Qi C., Song Z., Cheng H., Chen L., Qi Z. A systematic COSMO-RS study on mutual solubility of ionic liquids and C6-hydrocarbons. Green Chemical Engineering. 2024, vol. 5, no. 1, pp. 97—107.

11. El Alaoui L., Dekayir A. Theoretical study of the dissolution kinetics of galena and cerussite in an abandoned mining area (Zaida mine, Morocco). E3S Web of Conferences. 2018, vol. 37, article 01007. DOI: 10.1051/e3sconf/20183701007.

12. Van Der Bauwhede R., Muys B., Vancampenhout K., Smolders E. Accelerated weathering of silicate rock dusts predicts the slow-release liming in soils depending on rock mineralogy, soil acidity, and test methodology. Geoderma. 2024, vol. 441, article 116734. DOI: 10.1016/j.geoderma.2023.116734.

13. Nayak A., Jena M. S., Mandre N. R. Beneficiation of lead-zinc ores — A review. Mineral Processing and Extractive Metallurgy Review. 2022, vol. 43, no. 5, pp. 564—583.

14. Pan Z., Xiong J., Cui Y., Wei Q., Jia W., Zhang Z., Jiao F., Qin W. Effect mechanism of carbonaceous materials on the flotation separation of lead—zinc ore. Separation and Purification Technology. 2022, vol. 294, article 121101. DOI: 10.1016/j.seppur.2022.121101.

15. Konieczny A., Pawlos W., Krzeminska M., Kaleta R., Kurzydlo P. Evaluation of organic carbon separation from copper ore by pre-flotation. Physicochemical Problems of Mineral Processing. 2013, vol. 49, no. 1, pp. 189—201. DOI: 10.5277/ppmp130117.

16. Foszcz D., Drzymala J. Differentiation of organic carbon, copper and other metals contents by segregating flotation of final Polish industrial copper concentrates in the presence of dextrin. Physicochemical Problems of Mineral Processing. 2011, vol. 47.

17. Gredelj S., Zanin M., Grano S. R. Selective flotation of carbon in the Pb—Zn carbonaceous sulphide ores of Century Mine, Zinifex. Minerals Engineering. 2009, vol. 22, no. 3, pp. 279—288. DOI: 10.1016/j.mineng.2008.08.005.

18. Miller J. D., Wan R. Y., Díaz X. Preg-robbing gold ores. Gold ore processing. Elsevier, 2016, pp. 885—907. DOI: 10.1016/B978-0-444-63658-4.00049-9.

19. Feng D., Van Deventer J. S. J. Preg-robbing phenomena in the thiosulphate leaching of gold ores. Minerals Engineering. 2001, vol. 14, no. 11, pp. 1387—1402. DOI: 10.1016/S0892-6875(01)00153-4.

20. Adams M. D., Burger A. M. Characterization and blinding of carbonaceous preg-robbers in gold ores. Minerals Engineering. 1998, vol. 11, no. 10, pp. 919—927.

21. Polat M., Polat H., Chander S. Physical and chemical interactions in coal flotation. International Journal of Mineral Processing. 2003, vol. 72, no. 1-4, pp. 199—213.

22. Xu M., Li C., Wang Y., Zhang H. Investigation on mechanism of intensifying coal fly ash froth flotation by pretreatment of non-ionic surfactant. Fuel. 2019, vol. 254, article 115601. DOI: 10.1016/ j.fuel.2019.06.009.

23. Kadagala M. R., Nikkam S., Tripathy S. K. A review on flotation of coal using mixed reagent systems. Minerals Engineering. 2021, vol. 173, article 107217. DOI: 10.1016/j.mineng.2021.107217.

24. Hua Z., Shi B., Dong Y., Fu Y., Zeng Y., Sun W., Liu R., Tang H. Evaluation of mineralogical characteristics and flowsheet improvements for carbon-bearing lead-zinc ore. JOM. 2025, vol. 77, no. 2, pp. 830—841.

25. Atchabarova A. A., Abdimomyn S. K., Abduakhytova D. A., Zhigalenok Y. R., Tokpayev R. R., Kishibayev K. K., Khavaza T. N., Kurbatov A. P., Zlobina Y. V., Djenizian T. J. Role of carbon material surface functional groups on their interactions with aqueous solutions. Journal of Electroanalytical Chemistry. 2022, vol. 922, article 116707.

26. Nechiporenko A. P. Donorno-aktseptornye svoystva poverkhnosti tverdofaznykh sistem: indikatorniy metod [Donor–acceptor properties of the surface of solid-phase systems: indicator method], Moscow, Nauka, 2009, 232 p.

27. Tanabe K. Tverdye kisloty i osnovaniya [Solid acids and bases], Moscow, Mir, 1973, 183 p.

28. Zakharov N. V., Zakharova M. N., Zimin I. I. Indicator method for assessing the acidity and basicity of mineral surfaces. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2018, vol. 329, no. 4, pp. 83—92. [In Russ].

29. Antoshkina E. G., Smolko V. A. Determination of acid-base centers on the surface of quartz sand grains of some Russian deposits. Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya: Matematika, fizika, khimiya. 2008, pp. 65—68. [In Russ].

30. Yushina T. I., Yergeshev A. R., Dumov A. M., Makavetskas A. R. Study of the material composition of lead-zinc ore of the Shalkiya deposit in order to determine the possibility of its processing. Non-ferrous Metals. 2022, vol. 53, no. 2, pp. 8—14. DOI: 10.17580/nfm.2022.02.02.

31. Yagofarov M. I., Sokolov A. A., Balakhontsev I. S., Nizamov I. I., Solomonov B. N. Thermochemistry of fusion, solution and hydrogen bonding in benzamide, N-methylbenzamide, and acetanilide. Thermochimica Acta. 2023, vol. 728, article 179579. DOI: 10.1016/j.tca.2023.179579.

32. Ignatkina V. A., Bocharov V. A., Aksenova D. D., Kayumov A. A. Zeta potential of ultrafine sulfide surface and floatability of minerals. Izvestiya. Non-Ferrous Metallurgy. 2017, vol. 1, pp. 4—12. [In Russ]. DOI: 10.17073/0021-3438-2017-1-4-12.

33. Mukhanova A. A., Tusupbaev N. K., Semushkina L. V., Turysbekov D. K. Application of a modified collector in flotation of lead-zinc ores from the Shalkiya deposit. Complex Use of Mineral Resources. 2015, no. 3, pp. 9—16. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.