Physics of application of acoustic vibrations in stimulation of dissolution of rock salt

Increased production of crude oil calls for more storage reservoirs. In this regard, more attention is drawn to underground storages made in rock salt deposits by physicochemical methods to allow mineral extraction without underground mining operations. One of the limitations on efficiency of underground storages of preset geometry in rock salt deposits is the long period of construction due to the low velocity of rock salt dissolution in water. In this respect, it is highly critical to find smart and expedient methods to stimulate in-situ leaching of rock salt. This article presents some guidelines on application of acoustic vibrations in construction of underground oil storages in salt deposits by leaching. The theoretical and experimental research data on elastic vibrations in stimulation of dissolution of rock salt are given. The physical mechanism of the acoustic vibration effect on the mass transfer process is described. Mass transfer is greatly accelerated due to acoustic micro whirls which appear at the liquid–rock salt interface. These whirls rupture the boundary diffusion layer and increase the rate of dissolution. The results of the laboratory and semi-commercial scale tests are reported together with the optimized mode of vibration effect on dissolution. It is found that the rate of dissolution depends on the amplitude of liquid vibration velocity, and acceleration in dissolution is only observed at certain values of the vibration velocity in liquid.

Keywords: in-situ leaching, underground storage, generation of geometry of underground chambers, elastic vibrations, vibration velocity amplitude, boundary diffusion layer rupture, whirling water, hydrodynamic rotary radiator.
For citation:

Kurenkov D. S., Fedorov G. B., Dudchenko O. L. Physics of application of acoustic vibrations in stimulation of dissolution of rock salt. MIAB. Mining Inf. Anal. Bull. 2021;(5):4553. [In Russ]. DOI: 10.25018/0236_1493_2021_5_0_45.

Acknowledgements:
Issue number: 5
Year: 2021
Page number: 45-53
ISBN: 0236-1493
UDK: 622.692.24
DOI: 10.25018/0236_1493_2021_5_0_45
Article receipt date: 04.12.2020
Date of review receipt: 22.01.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

D.S. Kurenkov1, Senior Lecturer, e-mail: kurenkov@misis.ru,
G.B. Fedorov1, Cand. Sci. (Eng.), Assistant Professor,
O.L. Dudchenko1, Cand. Sci. (Eng.), Assistant Professor,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

D.S. Kurenkov, e-mail: kurenkov@misis.ru.

Bibliography:

1. Arens V. Zh., Gridin O. M., Kreynin E. V., Nebera V. P., Fazlullin M. I., Khrulev A. S., Khcheyan G. Kh. Fiziko-khimicheskaya geotekhnologiya: Uchebnik dlya vuzov [Physical and chemical geotechnology: textbook for high schools], Moscow, Izd-vo MGGU. 2010, 575 p.

2. Oparin V. N., Potapov V. P., Logov A. B., Schastlivtsev E. L., Yukina N. I. Identification of pollutant clusters in trade effluents in Kuzbass. Journal of Mining Science. 2016, vol. 52, no. 5, pp. 1011–1019. DOI: 10.1134/S1062739116041538.

3. Weisbrod N., Alon-Mordish C., Konen E., Yechieli Y. Dynamic dissolution of halite rock during flow of diluted saline solutions. Geophysical Research Letters. 2012, vol. 39, no. 9, L09404. DOI:10.1029/2012GL051306

4. Liu X., Yang X., Wang J., Li D., Li P., Yang Z. A dynamic dissolution model of rock salt under gravity for different flow rates. Arabian Journal of Geosciences. 2016, vol. 9, no. 3, pp. 1–8. DOI:10.1007/s12517-015-2254-0.

5. Yang X., Liu X., Zang W., Lin Z., Wang Q. A Study of analytical solution for the special dissolution rate model of rock salt. Advances in Materials Science and Engineering. 2017, vol. 4, pp. 1–8. DOI: 10.1155/2017/4967913.

6. Yang X., Liu X., Wang J., Zhao Z., Lei H. Analytical solution of a mathematical model for rock salt dissolution in still water. Arabian Journal of Geosciences. 2018, vol. 11, no. 23. DOI: 10.1007/s12517-018-4122-1.

7. Fedorov G. B., Dudchenko O. L., Kurenkov D. S. Construction of underground structures in saline deposits using acoustic vibrations. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 149– 155. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-149-155.

8. Stoev S. Vibroakusticheskaya tekhnika pri pererabotke mineral'nogo syr'ya [Vibroacoustic technology for the processing of mineral raw materials], Sofiya, Tekhnika, 1989, 370 p.

9. Jameson G. J., Davidson J. F. The motion of bubble in vertically oscillating liquid: theory for an inviscid liquid, and experimental results. Chemical Engineering Science, 1966, vol. 21, no. 1, pр. 29–34. DOI: 10.1016/0009-2509(66)80004-0.

10. Shul'gin A. I., Nazarova L. I., Rekhtman V. I. Akusticheskaya tekhnologiya v obogashchenii poleznykh iskopaemykh [Acoustic technology in mineral processing], Moscow, Nedra, 1987, 232 p.

11. Budzyński P., Gwiazda A., Dziubiński M. Intensification of mass transfer in a pulsed bubble column. Chemical Engineering and Processing — Process Intensification. 2017, vol. 112, pp. 18–30. DOI: 10.1016/j.cep.2016.12.004.

12. Golubina E., Kizim N., Alekseeva N. Intensification of the extraction of rare earth elements at the local mechanical vibration in the interfacial layer. Chemical Engineering and Processing — Process Intensification. 2018, vol. 132, pp. 98–104. DOI: 10.1016/j.cep.2018.08.019.

13. Chakravorty A. Process intensification by pulsation and vibration in miscible and immiscible two component systems. Chemical Engineering and Processing — Process Intensification. 2018, vol. 133, pp. 90–105. DOI: 10.1016/j.cep.2018.09.017.

14. Anushenkov A. N., Rostovtsev V. I., Frizorger V. K. Modification of coal tar pitch in hydropercussion-cavitation field. Journal of Mining Science. 2009, vol. 45, no. 5, pp. 509–516. DOI: 10.1007/s10913-009-0064-z.

15. Fedorov G. B., Agafonov Yu. G., Artem'ev V. B., Opanasenko P. I. Vibroakusticheskie metody i sredstva intensifikatsii protsessov gornogo proizvodstva [Vibroacoustic methods and means of mining processes intensification], Moscow, Gornoe delo OOO «Kimmeriyskiy tsentr», 2016, 255 p.

16. Fedorov G. B., Dudchenko O. L., Kurenkov D. S. Development of vibroacoustic module for fine filtration of drilling muds. Journal of Mining Institute. 2018, vol. 234, pp. 647–651. DOI: 10.31897/PMI.2018.6.647.

17. Ksenofontov B. S., Ivanov M. V. Case study: use of flotation for industrial stormwater treatment. Water Practice and Technology. 2014, vol. 9, no. 3, pp. 392–397. DOI: 10.2166/ wpt.2014.043.

18. Ksenofontov B. S., Ivanov M. V. Intensification of flotation treatment by exposure to vibration. Water Science and Technology. 2014, vol. 69, no. 7, pp. 1434–1439. DOI:10.2166/ wst.2014.046.

19. Ksenofontov B. S., Ivanov M. V. A Novel multistage kinetic modeling of flotation for waste-water treatment. Water Science and Technology. 2013, vol. 68, no. 4, pp. 807–812. DOI: 10.2166/wst.2013.303.

20. Ksenofontov B. S., Antonova E. S., Ivanov M. V., Kozodaev A. S., Taranov R. A. The influence of oil contaminated soil on the quality of surface waste water. Water Practice and Technology. 2015, vol. 10, no. 4, pp. 814–822. DOI: 10.2166/wpt.2015.101.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.