Erosion channels in salt—Seismic surveying and geomechanical substantiation

This article describes the in-mine seismic survey results obtained by the CDP-based method of reflected shear waves with separation of reflections, geological interpretation of the results and geomechanical substantiation of the nature of the revealed structures. For the first time in history of geological exploration of the Upper Kama salt deposit, the authorial method of separation of the wave fields has allowed the discovery of geological structures known in the structural geology but never recorded at the deposit under discussion. This article examines in details the geological interpretation of erosion channels as their detection is a major measure of operational safety in potash mines. The mechanism of erosion channeling is described, and fracturing of the crests of heaves is provided with a geomechanical substantiation. The developed method substantially improves the comprehensiveness and reliability of geological modeling. The introduction of the shear wave seismic exploration with separation of reflections in the advanced prospecting practice makes the latter more informative, and enables earlier impossible detection and localization of anomalies, which greatly reduces the risk of accidents in underground mining of salts at the Upper Kama deposit.

Keywords: Upper Kama salt deposit, geophysics, seismic reflection method, common depth point method, shear wave seismic exploration with separation of reflections, geology, geomechanics, erosion channel, fracturing zone, waterproof strata, inversion relief, anticline, tensile cracks.
For citation:

Prigara А. М., Gribkov D. S., Aptukov V. N. , Tsarev R. I., Zhukov A. A. Erosion channels in salt—Seismic surveying and geomechanical substantiation. MIAB. Mining Inf. Anal. Bull. 2023;(2):72-85. [In Russ]. DOI: 10.25018/0236_1493_2023_2_0_72.

Acknowledgements:
Issue number: 2
Year: 2023
Page number: 72-85
ISBN: 0236-1493
UDK: 550.834
DOI: 10.25018/0236_1493_2023_2_0_72
Article receipt date: 01.09.2022
Date of review receipt: 23.12.2022
Date of the editorial board′s decision on the article′s publishing: 10.01.2023
About authors:

A.M. Pigara1,2, Cand. Sci. (Eng.), Leading Researcher, e-mail: Andrey.Prigara@uralkali.com, ORCID ID: 0000-0003-0129-6133,
D.S. Gribkov1, Researcher, e-mail: Dmitry.Gribkov@uralkali.com,
V.N. Aptukov1,2, Dr. Sci. (Eng.), Professor, Head of Chairr, e-mail: valeryaptukov@gmail.com,
R.I. Tsarev1, Cand. Sci. (Eng.), Senior Researcher, e-mail: Roman.Tsarev@uralkali.com, ORCID ID: 0000-0002-7794-411X,
A.A. Zhukov1, Cand. Sci. (Eng.), Head of Laboratory, e-mail: Aleksandr.Zhukov@uralkali.com, ORCID ID: 0000-0003-3819-4309,
1 «VNII Galurgii» JSC, 614002, Perm, Russia,
2 Perm State National Research University, 614990, Perm, Russia

 

For contacts:

A.M. Pigara, e-mail: Andrey.Prigara@uralkali.com.

Bibliography:

1. Kudryashov A. I. Verkhnekamskoe mestorozhdenie soley. 2-e izd. [Verkhnekamskoe salt deposit, 2nd edition], Moscow, Epsilon Plyus, 2013, 368 p.

2. Golubev B. M. Stroenie solyanoy tolshchi Verkhnekamskogo mestorozhdeniya [Structure of the Verkhnekamskoe salt sequence], Candidate’s thesis, Perm, PGU, 1972, 31 p.

3. Jackson M. P. A., Hudec M. R. Salt tectonics principles and practice. Cambridge, 2017, 498 p.

4. Baryah A. A., Evseev A. V. Closure of potash and salt mines: Review and analysis of the problem. MIAB. Mining Inf. Anal. Bull. 2019, no. 9, pp. 5—29. [In Russ]. DOI: 10.25018/02361493-2019-09-0-5-29.

5. Zubov V. P., Kovalski E. R., Antonov S. V., Pachgin V. V. Improving the safety of mines in developing Verkhnekamsk potassium and magnesium salts. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 22—33. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-22-33.

6. Milanovic P., Maksimovich N., Meshcherikova O. Dams and Reservoirs in Evaporites. Switzerland: Springer, 2019, 170 p.

7. Giannino F., Leucii G. Electromagnetic Methods in Geophysics: Applications in GeoRadar, FDEM, TDEM, and AEM, 1st Edition. Hoboken: Wiley, 2021, 304 p.

8. Teare B. L., Ruiz H., Agbona A., Wolfe M., Dobreva I., Adams T., Selvaraj M., Hays D. Effect of soil water on gpr estimation of bulked roots, methods, and suggestions. Research Square. 2021, pp. 1—19. DOI: 10.21203/rs.3.rs-907807/v1.

9. Gendzwill D. J., Randy Brehm. High-resolution seismic reflections in a potash mine. Geophysics. 1993, vol. 58, no. 5, pp. 741—748.

10. Rapetsoa M. K., Manzi M. S. D., Westgate M., Sihoyiya M., James I., Onyebueke E., Kubeka P., Durrheim R. J., Kgarume T. Cost-effective in-mine seismic experiments to image platinum deposits and associated geological structures at Maseve platinum mine, South Africa. Near Surface Geophysics. 2022, vol. 20, no. 6, pp. 572—589. DOI: 10.1002/nsg.12216.

11. Rapetsoa M. K., Manzi M. In-mine seismic method for platinum orebody exploration in Maseve Platinum Mine, South Africa. NSG2021 27th European Meeting of Environmental and Engineering Geophysics. 2021, vol. 2021, pp. 1—5. DOI: 10.3997/2214-4609.202120195.

12. Matloga S., Manzi M., Bybee G. Interpretation of legacy 3D seismic data for underground platinum mines: Implication for mine safety. NSG2022 4th Conference on Geophysics for Mineral Exploration and Mining. 2022, vol. 2022, pp. 1—5. DOI: 10.3997/2214-4609.202220153.

13. Mahlalela V., Manzi M. Interpretation of legacy 3D seismic data from oryx mine in South Africa using seismic attributes. NSG2022 4th Conference on Geophysics for Mineral Exploration and Mining. 2022, vol. 2022, pp. 1—5. DOI: 10.3997/2214-4609.202220175.

14. Gillot E., Ponglungca A., Mounier P., Timberlake C. 3D seismic application for Mae Moh coal mine development. 24th European Meeting of Environmental and Engineering Geophysics. 2018, vol. 2018, pp. 1—5. DOI: 10.3997/2214-4609.201802609.

15. Kolesov S., Kuzin A., Kondrashkov V. High-resolution vibroseismology on the mining field. Engineering and Mining Geophysics 2019, 15th Conference and Exhibition. 2019, vol. 2019, pp. 1—9. DOI: 10.3997/2214-4609.201901763.

16. Savich A. I., Koptev V. I., Nikitin V. N., YAshchenko Z. G. Seysmoakusticheskie metody izucheniya massivov skal'nykh porod [Seismoacoustic methods of studying rock massifs], Moscow, Nedra, 1969, 328 p.

17. Vladov M. L., Kapustin V. V., Pyatilova A. M., Kuvaldin A. V. GPR observations to assess the conductivity of geological environment. A laboratory experiment. Geofizicheskie issledovaniya. 2017, no. 3(18), pp. 5—16. [In Russ]. DOI: 2010.21455/gr2017.3-1.

18. Sudakova M. S., Vladov M. L. Modern directions of georadiolocation. Moscow University Bulletin. Series 4. Geology. 2018, no. 2, pp. 3—12. [In Russ]. DOI: 10.33623/0579-94062018-2-3-12.

19. Babkin A. I. Spatial interference systems of seismoacoustic observations in the conditions of mining excavations of potassium mines. MIAB. Mining Inf. Anal. Bull. 2010, no. 1, pp. 261—267. [In Russ].

20. Babkin A. I. Shakhtnaya seysmoakustika po metodike mnogokratnykh perekrytiy (na primere Verkhnekamskogo mestorozhdeniya kaliynykh soley) [Mine seismoacoustics by the method of multiple overlaps (by the example of the Verkhnekamskoe potassium salt deposit)], Candidate’s thesis, Perm, Gornyy institut UrO RAN, 2001, 36 p.

21. Vagin V. B. Shakhtnye seysmicheskie metody izucheniya stroeniya massivov solyanykh porod [Mine seismic methods for studying the structure of massifs of salt rocks], Minsk, BelNITS «Ekologiya», 2010, 188 p.

22. Kulagov E. Features of seismic waves excited in an array of salt rocks in the Starobinskoye field. Litasfera. 2012, no. 2 (37), pp. 105—111. [In Russ].

23. Zhukov A. A., Prigara A. M., Tsarev R. I., Shustkina I. Yu. Method of mine seismic survey for studying geological structure features of Verkhnekamskoye salt deposit. MIAB. Mining Inf. Anal. Bull. 2019, no. 4, pp. 121—136. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-121-136.

24. Zhukov A. A., Prigara A. M., Tsarev R. I., Shustkina I. Yu., Voroshilov V. A. The influence of directionality of sources and receivers on the results of mine seismic survey. Geophysics. 2019, no. 5, pp. 26—36. [In Russ].

25. Prigara A. M. Features of processing of mine seismic survey data on transverse waves with reflection separation. Materialy konferentsii EAGE «Inzhenernaya i rudnaya geofizika» [Proceedings of the EAGE Conference «Engineering and Ore Geophysics»], Perm, 2020, pp. 1—11. [In Russ]. DOI: 10.3997/2214-4609.202051166.

26. Tsarev R. I., Glukhikh A. V., Zhukov A. A., Moroshkina Y. N., Prigara A. M., Geological justification of results of mine seismic survey on transverse waves with separation of PVRO reflections. Materialy konferentsii EAGE «Inzhenernaya i rudnaya geofizika» [Proceedings of the EAGE Conference «Engineering and Ore Geophysics»], Perm, 2020, pp. 1—8. [In Russ]. DOI: 10.3997/2214-4609.202051151.

27. Tsarev R. I., Prigara A. M., Zhukov A. A. Opportunities of seismic survey on transverse waves. Materialy konferentsii EAGE «Inzhenernaya i rudnaya geofizika» [Proceedings of the EAGE Conference «Engineering and Ore Geophysics»], Gelendzhik, 2019, pp. 1—9. [In Russ]. DOI: 10.3997/2214-4609.201901765.

28. Prigara A. M., Zhukov A. A., TSarev R. I., Shustkina I. Yu., Voroshilov V. A. Patent RU 2709415/С1. 02.04.2019. [In Russ].

29. Mikhaylov A. E. Strukturnaya geologiya i geologicheskoe kartirovanie [Structural geology and geological mapping], Moscow, Nedra, 1984, 464 p.

30. Konstantinova S. A., Aptukov V. N. Nekotorye zadachi mekhaniki deformirovaniya i razrusheniya solyanykh porod [Some problems of mechanics of deformation and fracture of salt rocks], Novosibirsk, Nauka, 2013, 191 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.