Electric drive of modern mining machines

Hoisting machines of mines are the most complex and critical objects in the overall technological chain of transportation of minerals from the deposit to the surface. In most cases, the hoist is the only link between mining operations and the surface. The main solutions for mine hoisting machines are: frequency-controlled synchronous and asynchronous electric drives. When modernizing existing DC drives, a thyristor converter-DC motor system is used. The article presents the experience of LLC “Electrotechnical Industrial Company” in the design and implementation of gearless low-speed AC and DC electric drives for mine hoisting machines manufactured by PJSC “Uralmashzavod”. A description of the projects implemented by the company’s employees is given, the specific of choosing one or another type of electric drive for mine hoisting machines is shown. A description of a gearless thyristor DC electric drive is given, which is used in the modernization hoisting machines. The quality of electricity and measures to improve it during the operation of a thyristor DC electric drive of mine hoisting machine are considered. AC electric drives of mine hoisting machines without a gearbox based on low-speed synchronous electric motors with frequency converters with direct communication, which are currently operating at the production sites of PJSC MMC Norilsk Nickel and OJSC Uralkali, are considered. A description of modern electric drives of mine hoisting machines without a gearbox based on low-speed synchronous electric machines with high-voltage frequency converters with active front end rectifiers is given. The comparison of electric drives of hoists with different types of converters is given according to the most important practical indicators.

Keywords: electric drive, mine hoisting machine, electric motor, thyristor converter, frequency converter, active voltage rectifier, power quality, reducing the rated current of the inverter.
For citation:

Abramov B. I., Ivanov A. G., Shilenkov V. A., Kuzmin I. K., Shevyrev Yu. V. Electric drive of modern mining machines. MIAB. Mining Inf. Anal. Bull. 2022;(5—2):145—162. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_145.

Acknowledgements:
Issue number: 5
Year: 2022
Page number: 145-162
ISBN: 0236-1493
UDK: 62-83:621.69
DOI: 10.25018/0236_1493_2022_52_0_145
Article receipt date: 01.10.2021
Date of review receipt: 16.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.04.2022
About authors:

Abramov B. I.1, General Director, abramov@electroprom.com;
Ivanov A. G.1, Cand. Sci. (Eng.), Deputy General Director for Business Development, andrej.ivanov@electroprom.com;
Shilenkov V. A.1, Deputy Technical Director, shilenkov@electroprom.com;
Kuzmin I. K.1, Cand. Sci. (Eng.), Deputy Director of the Department of Sales and Business Development in the Mining Industry, kuzminik@electroprom.com;
Shevyrev Yu. V.2, Dr. Sci. (Eng.), Professor of the Department “Energy and energy efficiency of the mining industry”, https://orcid.org/0000-0003-2452-9796, uvshev@yandex.ru;
1 Electrotechnical Industrial Company LLC (Electroprom LLC), 129626 Moscow, Prospect Mira, 106, Russia;
2 National University of Science and Technology MISiS, Leninskiy prospekt, 4, Moscow, 119049, Russia.

 

For contacts:

Shevyrev Yu. V., e-mail: uvshev@yandex.ru

Bibliography:

1. Ivanov G. M. Automated electric drive in industry. Ulyanovsk, UlGTU, 2013, 442 p. [In Russ].

2. Abramov B. I., Kogan A. I. et al. Frequency-regulated electric drive of drilling rigs BU 4200/250. Elektrotekhnika, 2009, no 1, pp. 8—13. [In Russ].

3. Datskovsky L. Kh., Abramov B. I., Shevyreva N. Yu., Shevyrev Y. V. Electric drive of stationary installations in the mining industry. Proceedings of the X International Conference on Automated Electric Drive AEP. 2018, Novocherkassk, October 3—6. 2018, pp. 169—174. [In Russ].

4. Katolikov V. E., Dinkel A. D. Dynamic modes of mine rise, Moscow, Nedra, 1995, 448 p. [In Russ].

5. Ziad M. Ali, Faisal Q. Alenezi, Sameh S. Kandil, Shady H. E. Abdel Aleem. Practical considerations for reactive power sharing approaches among multiple-arm passive filters in non-sinusoidal power systems. International Journal of Electrical Power & Energy Systems. 2018, vol. 103, pp. 660—675.

6. Boudebbouz O., Boukadoum A., Medoued A. Effective electric power quantities and the sequence reference frame: A comparison study. Electric Power Systems Research. 2016, vol. 140, pp. 485—492.

7. Do T. L. Research, assessment and proposals on resolving power quality problem for the power supply system of Lam Dong alumina refinery, Vietnam. Gornye nauki i tekhnologii (Mining Science and Technology). 2021, no 6(2), pp 121—127. DOI: 10.17073/25000632— 2021—2-121—127. [In Russ].

8. Datskovsky L. Kh., Rogovoy V. I. Electric drives with synchronous motors, Encyclopedia. Volume IV-2. Electric drive, hydraulic and vibration drives. Book 1. Elektropivod, Moscow, Mashinostroenie, 2012, p. 319—367. [In Russ].

9. Zhemerov G. G. Thyristor frequency converters with direct connection (Cycloconverter), Moscow, Energiya, 1977, 280 p. [In Russ].

10. Sleganovsky O. V., Datskovsky L. H., Kuznetsov I. S., etc. Systems of sequence control of AC electric drives with valve converters, Moscow, Energoatomizdat, 1983, 256 p. [In Russ].

11. Vinogradov A. B. Vector control of AC drives, Ivanovo, IGEU, 2008, 298 p. [In Russ].

12. Shevyreva N. Yu. Effects of active rectifiers on power quality in supply systems in mineral mining industry. Eurasian mining. 2021, no. 1, pp. 70—74. DOI 10.17580/ em.2021.01.14.

13. Yoon John. Motors, drives, and HVAC efficiency. Consulting Specifying Engineer, 2016, no. 1, pp. 50—63.

14. Shevyrev Yu. V., Shevyreva N. Yu. Improvement of voltage waveform in power supply systems with dynamic rectifier in mineral mining and processing industry. Gornyi Zhurnal. 2019, no. 1, pp. 66—69. DOI: 10.17580/gzh.2019.01.14 [In Russ].

15. Pollefliet J. Power Electronics: Drive Technology and Motion Control. London, Academic Press, 2017, 412 p.

16. Sinamics Low Voltage Engineering Manual. Siemens. Edition July 2017, vol. 6.5, 556 p., available at: https://cache.industry.siemens.com/dl/files/185/83180185/att_938805/ v1/SINAMICS_Engineering_manual_V6.5_July_2017_external-e.pdf.

17. Shevyrev Yu. V. Power quality improvement in operation of semiconductor frequency converter. MIAB. Mining Inf. Anal. Bull. 2020;(2):171—178. [In Russ]. DOI: 10.25018/0236—1493—20202—0-171—178.

18. Nho N. V., Pham Khoa Dang. PWM Strategy to Alleviate Common-Mode Voltage with Minimized Output Harmonic Distortion for Five-Level Cascaded H-Bridge Converters. Energies. 2021, vol. 14, pp. 1—26. DOI:10.3390/en14154476.

19. Dixon J. W. Effective Transient-Free Capacitor Switching (TFCS) for Large Motor Starting on MV Systems. IEEE Transactions on Industry Applications. 2018, vol. 8, pp.113— 124. DOI:10.1109/PCICON.2017.8188730.

20. Pekdemir A., Yildiz A. B. Analysis and modelling of FC-TCR based on static VAR compensator. ICEEE. International Conference on Electrical and Electronic Engineering. 2018, vol. 5, pp. 115—118. DOI: 10.1109/ICEEE2.2018.8391312.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.