Experimental study of elastic properties of coals of various degrees of tectonic disturbance by laser-ultrasonic spectroscopy

The paper discusses the examination of coal specimens obtained from the Boldarevsky Bed (S. М. Kirov coal mine, Kuznetsk Basin). Elastic wave velocities in the coal specimens were measured by means of laser ultrasonic testing in pulse-echo and through-transmission modes. Generated acoustic pulses travelled in two directions, parallel and perpendicular to visual layering. We used the well-known empirical Markote-Rios and Greenberg-Castagna equations to verify the relationship of the measured velocities Vl(Vt). The local values of the dynamic modulus of elasticity were determined from the experimental elastic wave velocities. It is found that the most informative parameter for assessing the anisotropy of black coals is the P-wave velocity. It is found that shear wave velocities and dynamic modulus of elasticity do not exhibit significant changes depending on direction, which is due to the high heterogeneity of coal and elastic waves attenuation. Images of the internal structure of the specimens were produced in three planes, based on which the geometric characteristics and orientation of heterogeneities and bedding were determined. Coal specimens from the overlying coal seam, which is less affected by stress and temperatures, were similarly examined. It is revealed that its structure is more anisotropic with orthotropic elastic characteristics. It is concluded that the elastic characteristics of coals become more isotropic due to an increasing level of disturbances caused by various tectonic processes.

Keywords: coal, laser-ultrasound diagnostics, elastic wave velocities, dynamic modulus of elasticity, anisotropy, echo mode, shadow mode, internal structure, structurally modified coal.
For citation:

Ivanov P. N., Bezrukov V. I. Experimental study of elastic properties of coals of various degrees of tectonic disturbance by laser-ultrasonic spectroscopy. MIAB. Mining Inf. Anal. Bull. 2021;(4-1):26—40. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_26.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 26-40
ISBN: 0236-1493
UDK: 622.33+620.179.16
DOI: 10.25018/0236_1493_2021_41_0_26
Article receipt date: 25.01.2021
Date of review receipt: 17.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

Ivanov P. N.1, PhD-student, pavelnivanov@mail.ru;
Bezrukov V. I.1, student;
1 National Research Technological University “MISiS” Mining Institute, Moscow, Russia.

 

For contacts:
Bibliography:

1. Ul’yanova E. V. Malinnikova O. N. Pashichev B. N. Malinnikova E. V. Microstructure of Coal before and after Gas-Dynamic Phenomena. Journal of Mining Science, 2019, Vol. 55, Issue 5. pp. 701—707. DOI: 10.1134/S1062739119056063.

2. Ul’yanova Ye. V. Vasil’kovskiy V. A. Malinnikova O. N. Influence of the gas-dynamic phenomenon on the sorption properties of coal from the “Krasnolimanskaya” mine. MIAB. Mining Inf. Anal. Bull. 2018, no. 11, pp. 46—55, DOI: 10.25018/0236-1493-2018-11-046-55. [In Russ]

3. Abramov I. L. Types and causes of gas-dynamic phenomena in coal mines. Vestnik sibirskogo gosudarstvennogo industrial’nogo universiteta. 2015, no. 1. pp. 16—17. [In Russ]

4. Ivanov B. M. Faith G. N. Yanovskaya M. F. Mekhanicheskiyeifiziko-khimicheskiyesvoy stvaugleyvybrosoopasnykhplastov [Mechanical and physicochemical properties of coal from outburst-hazardous seams], Moscow: Nauka. 1979, 194 p. [In Russ]

5. Petukhov I. M. Lin’kov A. M. Mekhanika gornykh udarov i vybrosov [Rock burst and blowout mechanics], Moscow: Nauka, 1983. 280 p. [In Russ]

6. Oparin V. N. Kiryaeva T. A. Gavrilov V. Y. Shutilov R. A. Kovchavtsev A. P. Tanaino A. S. Efimov V. P. Astrakhantsev I. E. Grenev I. V. Interaction of geomechanical and physicochemical processes in Kuzbass coal. Journal of Mining Science, 2014, vol. 50, no 2. pp. 191—214. DOI: 10.1134/S106273911402001X.

7. Tang, Z. Yang, S. Zhai, C. and Xu, Q. Coal Pores and Fracture Development during CBM Drainage: Their Promoting Effects on the Propensity for Coal and Gas Outbursts. Journal of Natural Gas Science and Engineering, 2018, vol. 51,pp. 9–17. DOI: 10.1016/j. jngse.2018.01.003.

8. Reuter, M. Krach, M. Kießling, U. Veksler, J. Geomechanical State of Production Faces in Polysaevskaya Coal Mine in Kuzbass. Journal of Mining Science, 2017, vol. 53, no. 1.pp. 43—48.DOI: 10.1134/S1062739117011811.

9. Frolkov, G. D. Frolkov, A. G.: Mechanochemical concept of outburst hazard in coal seams. Ugol’, 2005, no. 2,pp. 18—22.

10. Malinnikova O. N. Uchayev Dm. V. Uchayev D. V. Multifractal assessment of the propensity of coal seams to gas-dynamic phenomena. MIAB. Mining Inf. Anal. Bull. 2009, no. 12. pp. 214—233. [In Russ]

11. Trubetskoy К. N. Ruban А. D. Viktorov S. D. Malinnikova О. N. Odintsev V. N. Kochanov A. N. Uchaev D. V. Fractal Structure of Disturbance of Bituminous Coal and Their Proneness to Gas Dynamic Destruction. Doklady Earth Sciences, 2010, Vol. 431, part 2, pp. 538–540. DOI: 10.1134/S1028334X10040264.

12. Malinnikova О. N. Ul’yanova Е. V. Dolgova М. О. Zverev I. V. Change in Fossil Coal Microstructure due to Sudden Coal and Gas Outbursts. Gornyi Zhurnal. 2017, no. 11, pp. 27–32. DOI:10.17580/gzh.2017.11.05. [In Russ]

13. Godyn K. Structurally altered hard coal in the areas of tectonic disturbances—An initial attempt at classification. Archives of Mining Sciences, 2016, Vol. 61, no. 3, pp. 677– 694. DOI: 10.1515/amsc-2016-0047.

14. HanY. Wang, J. Dong, Y. Hou, Q. Pan, J. The Role of Structure Defects in the Defomation of Anthracite and Their Influence on the Macromolecular Structure. Fuel, 2017, vol. 206, pp. 1–9. DOI:10.1016/j.fuel.2017.05.085.

15. Młynarczuk M. Wierzbicki M. Stereological and profilometry methods in detection of structural deformations in coal samples collected from the rock and outburst zone in the “Zofiówka” colliery. Archives of Mining Sciences, 2009, Vol. 54, no. 2, pp. 189—201.

16. Godyn K. Advancement of structural changes of near-fault coals as a parameter useful in predicting the possibility of gas-geodynamic phenomena. Dokumenta Geonica. In Proceedings of the 8th Czech-Polish Conference Geology of Coal Basins, Ostrava, Czech Republic, 2011, pp. 19–21.

17. Hamdani A. H. X-Ray Computed Tomography Analysis of Sajau Coal, Berau Basin, Indonesia: 3D Imaging of Cleat and Microcleat Characteristics. International Journal of Geophysics, 2015, no. 415769. DOI: 10.1155/2015/415769.

18. Hong Y.-D. Lin B.-Q. Zhu C.-J. Wang Z. Liu J.-Q. Saffari P. Nie W. Image and ultrasonic analysis-based investigation of coal core fracturing by microwave energy. International Journal of Rock Mechanics and Mining Sciences, 2020, Vol. 127, Article 104232. DOI: 10.1016/j.ijrmms.2020.104232.

19. Dirgantara F. Batzle M. L. Curtis J. B. Maturity characterization and ultrasonic velocities of coals. Society of Exploration Geophysicists International Exposition and 81st Annual Meeting, 2011, pp. 2308—2312. DOI: 10.1190/1.3627668.

20. Kravcov A. Svoboda P. Konvalinka A. Cherepetskaya E. B. Karabutov A. A. Morozov D. V. Shibaev I. A. Laser-ultrasonic testing of the structure and properties of concrete and carbon fiber-reinforcedplastics. Key Engineering Materials, 2017, Vol. 722, pp. 267—272.

21. Zarubin V. Bychkov A. Simonova V. Zhigarkov V. Karabutov A. Cherepetskaya E. A refraction-corrected tomographic algorithm for immersion laser-ultrasonic imaging of solids with piecewise linear surface profile. Applied Physics Letters, 2018, Vol. 112, no. 214102. DOI: 10.1063/1.5030586.

22. Shibaev I. A. Morozov D. V. Dudchenko O. L. Pavlov I. A. Estimation of local elastic moduli of carbon-containing materials by laser ultrasound. Key Engineering Materials, 2018, Vol. 769, pp. 96—101. DOI: 10.4028/www.scientific.net/KEM.769.96.

23. Vinnikov V. A. Zakharov V. N. Malinnikova O. N. Cherepetskaya E. B. Analysis of structure and elastic properties of geomaterials using contact broadband ultrasonic structural spectroscopy. Gornyi Zhurnal. 2017, no. 4, pp. 29—32. [In Russ]. DOI: 10.17580/ gzh.2017.04.05.

24. Shibaev I. A. Vinnikov V. A. Stepanov G. D. Determining elastic properties of sedimentary strata in terms of limestone samples by laser ultrasonics. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 125—134. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-125134.

25. Wang Y. Xu X.-K. Zhang Y.-G. Ultrasonic elastic characteristics of six kinds of metamorphic coals in China under room temperature and pressure conditions. Acta Geophysica Sinica, 2016, Volume 59, Issue 7. pp. 2726—2738. DOI: 10.6038/cjg20160735

26. Iwuoha S. C. Pedersen P. K. Clarkson C. R. Gates I. D. A working method for estimating dynamic shear velocity in the montney formation. MethodsX, 2019, Vol. 6, pp. 1876—1893. DOI: 10.1016/j.mex.2019.08.013.

27. Vernik L. Castagna J. Omovie S. J. S-wave velocity prediction in unconventional shale reservoirs. Geophysics, 2018, Vol. 83, Issue 1, pp. MR35-MR45. DOI: 10.1190/ GEO2017—0349.1.

28. Mavko G. Mukerji T. Dvorkin J. The Rock Physics Handbook. Cambridge University Press, London, 2009, 511 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.