Bibliography: 1. Oparin V. N. Kiryaeva T. A. Usoltseva O. M. Tsoi P. A. Semenov V. N. On the features of the development of nonlinear deformation-wave processes in coal samples of various stages of metamorphism during their loading to failure in a changing temperature field. Fizikotekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no. 4. pp. 3—24 [In Russ].
2. Yin T. B. Wang P. Li X. B. Shu R. H. Ye Z. Y. Effects of thermal treatment on physical and mechanical characteristics of coal rock. Journal of Central South University, 2016, Vol. 23, pp. 2336—2345. DOI: 10.1007/s11771-016-3292-9.
3. Fedorov V. A. Ushakov I. V. Shelokhvostov V. P. Effect of temperature on morphologic peculiarities of laser-induced calcite damage . Fizika i Khimiya Obrabotki Materialov. 1998, Vol. 1, pp. 37—40.
4. Kong B. Li Z. Wang E. Fine characterization rock thermal damage by acoustic emission technique. Journal of Geophysics and Engineering. 2018, no. 15 (1), pp. 1—12. DOI: 10.1088/1742—2140/aa9a54.
5. Hosseini M. Effect of temperature as well as heating and cooling cycles on rock properties. Journal of Mining and Environment. 2017, Vol. 8, no. 4, pp. 631—644. DOI: 10.22044/jme.2017.971.
6. Ivanov B. M, Faith G. N. Yanovskaya M. F. Mekhanicheskiye i fiziko-khimicheskiye svoystva vzryvoopasnykh ugol’nykh plastov [Mechanical and physico-chemical properties of coal from hazardous coal seams]. Moscow: Nauka, 1979, 195 p. [In Russ].
7. Kossovich Ye. L. Epshteyn S. A. Shkuratnik V. L. Minin M. G. Prospects and problems of using modern technology of microand nanoindentation for diagnostics of mechanical properties of coals. Gornyi Zhurnal. 2017, no. 12, pp. 25—30. DOI 10.17580/gzh.2017.12.05 [In Russ].
8. Dudchenko O. L. Fedorov G. B. Andreev A. A. Innovative method for the classification of coal slurries . Ugol’. 2018, Vol. 6, pp. 67—71. DOI: 10.18796/0041-5790-2018-6-67-71 [In Russ].
9. Melnikov N. N. Mesyats S. P. Ostapenko S. P. Cherepetskaya E. B. Shibaev I. A. Morozov N. A. Kravcov A. N, Konvalinka A. Investigation of disturbed rock zones in open-pit mine walls by seismic tomography. Key Engineering Materials, 2017, Vol 755, pp 147—152. DOI: 10.4028/www.scientific.net/KEM.755.147.
10. Dudchenko O. L. Fedorov G. B. Vibroacoustic technique for intensification of coal preparation . Ugol. 2019, Vol. 4, pp. 62—66. DOI: 10.18796/0041-5790-2019-4-62-66 [In Russ].
11. Shkuratnik V. L. no.vikov E. A. Physical modeling of the grain size influence on acoustic emission in the heated geomaterials. Journal of Mining Science. 2012, Vol. 48, no. 1, pp. 9—14. DOI: https://doi.org/10.1134/S1062739148010029.
12. Beron A. I. Vatolin Ye. S. Koyfman M. I. Mokhnachev M. P. Chirkov S. Ye. Svoystva gornykh porod pri raznykh vidakh i rezhimakh nagruzheniya [Properties of rocks under different types and modes of loading]. Moscow: Nedra. 1984, 276 p. [In Russ].
13. Zakharov V. N. Malinnikova O. N. Investigation of the structural features of coal from outburst-hazardous seams. Zapiski Gornogo instituta. 2014, no. 210, p. 43. [In Russ].
14. Kossovich Ye. L. Epshteyn S. A. Dobryakova N. N. Minin M. G. Structural features and mechanical properties of anthracite, metaanthracite and graphite . Gornyi Zhurnal. 2020, no. 4. pp. 25—29. DOI: 10.17580/gzh.2020.04.05. [In Russ].
15. Victorov S. D. Kochanov A. N. Pachezhertsev A. A. Experimental study of the microstructural characteristics of the surfaces and volumes of granite samples . Bulletin of the Russian Academy of Sciences: Physics. 2018, Vol. 82, no. 7, pp. 786—788.
16. Han Y. Wang J. Dong Y. Hou Q. Pan J. The role of structure defects in the deformation of anthracite and their influence on the macromolecular structure. Fuel. 2017, Vol. 206, pp. 1—9. DOI: 10.1016/j.fuel.2017.05.085.
17. Shibaev I. A. Morozov D. V. Dudchenko O. L. Pavlov I. A. Estimation of local elastic moduli of carbon-containing materials by laser ultrasound. Key Engineering Materials, 2018, Vol. 769, pp. 96—101. DOI: 10.4028/www.scientific.net/KEM.769.96.
18. Bychkov A. S. Cherepetskaya E. B. Karabutov A. A. Makarov V. A. Laser optoacoustic tomography for the study of femtosecond laser filaments in air. Laser Physics Letters. 2016, Vol. 13 (8), no. 085401. DOI: 10.1088/1612-2011/13/8/085401.
19. Zarubin V. Bychkov A. Simonova V. Zhigarkov V. Karabutov A. Cherepetskaya E. A refraction-corrected tomographic algorithm for immersion laser-ultrasonic imaging of solids with piecewise linear surface profile. Applied Physics Letters, 2018, Vol. 112, no. 214102. DOI: 10.1063/1.5030586.
20. Karabutov A. A. Podymova N. B. Cherepetskaya E. B. Determination of uniaxial stresses in steel structures by the laser-ultrasonic method. Journal of Applied Mechanics and Technical Physics. 2017, no. 58 (3), pp. 503—510. DOI: 10.1134/S0021894417030154.
21. Cherepetskaya E. B. Karabutov A. A. Makarov V. A. Mironova E. A. Shibaev I. A. Vysotin N. G. Morozov D. V. Internal structure research of shungite by broadband ultrasonic spectroscopy. Key Engineering Materials. 2017, Vol. 755, pp. 242—247. DOI: 10.4028/www.scientific.net/KEM.755.242.
22. Shibaev I. A. Vinnikov V. A. Stepanov G. D. Determining elastic properties of sedimentary strata in terms of limestone samples by laser ultrasonics. MIAB. Mining Inf. Anal. Bull. 2020, Vol. 7, pp. 125—134. DOI: 10.25018/0236-1493-2020-7-0-125-134.