Digital model of shovel work process

The discussion focuses on improving efficiency of front-acting shovels by means of coordination of functions of main propelling machinery during excavation. The feature of the main propelling machinery (hoisting and crowding gears) is the kinematic connection between their shafts as the members of the mechanisms and components of the shovel equipment (lever, boom point sheave, bucket and ladle hanger) generate an integrated kinematic chain. The kinematic chain is included in the transversing gear of the main propelling machinery together with the leverage mechanism. The joint coordinates of the leverage mechanism (coordinates of the top cutting edge of the bucket) define position of all movable members of the main propelling machinery, leverage mechanism and gearing shafts. The kinematics and forces of the leverage mechanism are analyzed. The constructed mathematical model of the excavation process determines the bucket position (upper cutting edge) in the work zone of the shovel. Based on the computational experiment, the digital model of excavation by shovels is developed. The studies can be used to create an automated control for the main propelling machinery both during actual excavation of rocks and when performing haulage operations in the shoveling cycle.

Keywords: shovel, implement, main propelling machinery, excavation process, leverage mechanism, main transversing gear, mathematical model, digital model.
For citation:

Komissarov A. P., Lagunova Yu. A., Nabiullin R. Sh., Khoroshavin S. A. Digital model of shovel work process. MIAB. Mining Inf. Anal. Bull. 2022;(4):156-168. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_156.

Acknowledgements:
Issue number: 4
Year: 2022
Page number: 156-168
ISBN: 0236-1493
UDK: 622.232
DOI: 10.25018/0236_1493_2022_4_0_156
Article receipt date: 29.01.2022
Date of review receipt: 10.02.2022
Date of the editorial board′s decision on the article′s publishing: 10.03.2022
About authors:

A.P. Komissarov1, Dr. Sci. (Eng.), Professor, e-mail: Anatoliy.Komissarov@m.ursmu.ru, ORCID ID: 0000-0003-4320-8111,
Yu.A. Lagunova1, Dr. Sci. (Eng.), Professor, e-mail: yu.lagunova@mail.ru, avtor ID: 178105, ORCID ID: 0000-0000-2440-4121,
R.Sh. Nabiullin1, Cand. Sci. (Eng.), e-mail: nabiullin.r@m.ursmu.ru, ORCID ID: 0000-0001-7519-2156,
S.A. Khoroshavin1, Cand. Sci. (Eng.), e-mail: horoshavin.s3@gmail.com, ORCID ID: 0000-0002-6895-9256,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

S.A. Khoroshavin, e-mail: horoshavin.s3@gmail.com.

Bibliography:

1. Poderni R. Yu., Bules P. Comparative analysis of hydraulic and mechanical straight shovel excavators. Gornyi Zhurnal. 2015, no. 1, pp. 55—61. [In Russ].

2. Komissarov A. P., Letnev K. Yu., Lukashuk O. A. Analysis of double-crank-lever mechanisms of the working equipment of mining excavators. Tekhnologicheskoe oborudovanie dlya gornoy i neftegazovoy promyshlennosti: Sbornik trudov XV Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Chteniya pamyati V.R. Kubacheka» [Technological equipment for the mining and oil and gas industry. Proceedings of the XV International Scientific and Technical Conference «Readings in memory of V.R. Kubachek»], Ekaterinburg, UGGU, 2017, pp. 41—46. [In Russ].

3. Koryukov A. A. Geometric model of the working equipment of a quarry excavator for calculating the loads of the electric drive and controlling the position of the bucket. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2013, no. 3, pp. 106—113. [In Russ].

4. Kuznetsov A. L., Anistratov K. Yu. Mining excavators of PJSC Uralmashzavod — the present and future of the Russian mining industry. Ugol'. 2016, no. 8, pp. 77—81. [In Russ].

5. Lagunova Yu. A., Komissarov A. P., Shestakov V. S., etc. Gornye mashiny. Entsiklopediya. T. IV-24 [Mining machines. Encyclopedia. Vol. IV-24], Moscow, Mashinostroenie, 2011, 493 p.

6. Malafeev S. I., Tikhonov Yu. V. Intelligent control components for open pit excavators. Automation in industry. 2013, no. 10, pp. 33—37. [In Russ].

7. Pevzner L. D. Avtomatizirovannoe upravlenie moshchnymi odnokovshovymi ekskavatorami [Automated control of powerful single-bucket excavators], Moscow, Gornoe delo, 2014.

8. Zhang L., Zhao J, Long P, Wang L, Qian L, Lu F, Song X, Manocha D. An autonomous excavator system for material loading tasks. Science Robotics. 2021, vol. 55, no. 6, pp. 8474— 8481.

9. Yang Y., Long P., Song X., Pan J., Zhang L. Optimization-based framework for excavation trajectory generation. IEEE Robotics and Automation Letters. 2021, vol. 2, no. 6, pp. 1479— 1486.

10. Babakov S. E., Pevzner L. D. Algorithmization of excavator bucket motion control in scooping mode using fuzzy logic. Mining Equipment and Electromechanics. 2012, no. 9, pp. 8—17. [In Russ].

11. Druzhinin A. V. Improving the quality of control of single-bucket excavators based on a multi-agent approach. Novye ogneupory. 2016, no. 3, pp. 11—12. [In Russ].

12. Pevzner L. D., Babakov S. E. Management of the scooping operation of a mining shovelshovel using fuzzy logic. Ugol'. 2012, no. 8, pp. 64—65. [In Russ].

13. Pevzner L. D., Babakov S. E. Mathematical model of the dynamics of a mining excavator as a control object. MIAB. Mining Inf. Anal. Bull. 2013, no. 12, pp. 249—252. [In Russ].

14. Pevzner L. D., Babakov S. E. Algorithm for controlling the scooping operation of a quarry shovel excavator using fuzzy logic. MIAB. Mining Inf. Anal. Bull. 2015, no. 1, pp. 263—271. [In Russ].

15. Li Y., Mu X., Fan R. Multi-objective optimization and simulation of novel working mechanism for face-shovel excavator. International Journal of Intelligent Robotics and Applications. 2021, vol. 1, no. 5.

16. Ramezani M., Tafazoli S. Using Artificial Intelligence In Mining Excavators: Automating routine operational decisions. IEEE Industrial Electronics Magazine. 2021, vol. 1, no. 15, pp. 6—11. DOI: 10.1109/MIE.2020.2964053.

17. Sotiropoulos F. E., Asada H. H. Dynamic modeling of bucket-soil interactions using Koopman-DFL lifting linearization for model predictive contouring control of autonomous excavators. IEEE Robotics and Automation Letters. 2022, vol. 1, no. 7, pp. 151—158.

18. Rekhtman A. P., Kragel A. A. Complex tests of the EKG-12 excavator. Mekhanizatsiya stroitel'stva. 2001, no. 1, pp. 24—26. [In Russ].

19. Samolazov A. V., Donchenko T. V., Shibanov D. A. Practical results of the introduction of excavators EKG-18R and EKG-32R manufactured by «IZ-KARTEKS im. P.G. Korobkov» at the coal mining enterprises of Russia. Ugol'. 2013, no. 4, pp. 36—38. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.