Bibliography: 1. Ponomaryov A. B., Zakharov A. V., Tatyannikov D. A., Shalamova E. A. Geotechnical monitoring in the urban construction environment. Soil Mechanics and Foundation Engineering. 2023, vol. 60, pp. 452—458. DOI: 10.1007/s11204-023-09914-y.
2. Dzhevaga N., Borisova D. Analysis of air monitoring system in megacity on the example of St. Petersburg. Journal of Ecological Engineering. 2021, vol. 22, no. 4, pp. 175—185. DOI: 10.12911/22998993/134076.
3. Erzova V. A., Rumynin V. G., Sudarikov S. M., Shvarts A. A., Vladimirov K. V. Influence of north-west nuclear complex facilities on groundwater contamination (Leningrad Region). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, vol. 332, no. 9, pp. 30—42. [In Russ]. DOI: 10.18799/24131830/2021/9/3351.
4. Skachkova M. E., Guryeva O. S. Monitoring of the State of Saint Petersburg Green Spaces by Remote Sensing Data. Ecology and Industry of Russia. 2023, vol. 27, no. 5, pp. 51—57. [In Russ]. DOI: 10.18412/1816-0395-2023-5-51-57.
5. Pashkevich M. A., Danilov A. S. Ecological security and sustainability. Journal of Mining Institute. 2023, vol. 260, pp. 153—154. [In Russ].
6. Smirnov Y. D., Suchkov D. V., Danilov A. S., Goryunova T. V. Artificial soils for restoration of disturbed land productivity. Eurasian Mining. 2021, vol. 36, no. 2, pp. 92—96. DOI: 10.17580/ em.2021.02.19.
7. Pashkevich M. A., Bech J., Matveeva V. A., Alekseenko A. V. Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg. Journal of Mining Institute. 2020, vol. 241, pp. 125—130. [In Russ]. DOI: 10.31897/PMI.2020.1.
8. Kabirov R. R., Sagitova A. R., Suhanova N. V. Development and use of a multi-component test system for assessing the toxicity of urban soil cover. Ekology. 1997, no. 6, pp. 408—411. [In Russ].
9. Troyanovskaya E. S., Abrosimova O. V., Tihomirova E. I. Assessment of the state of soils in urban areas using the method of complex biotesting. Theoretical and Applied Ecology. 2011, no. 2, pp. 32—36. [In Russ].
10. Alekseenko V. A., Shvydkaya N. V., Alekseenko A. V. Element accumulation patterns of native plant species under the natural geochemical stress. Plants. 2021, vol. 10, no. 1, article 33. DOI: 10.3390/plants10010033.
11. Eremina D. V. Bioinformatics: current state and prospects. Epoch of Science. 2024, no. 37, pp. 12—16. [In Russ].
12. Petuhov A. S., Kremleva T. A., Hritohin N. A., Petuhova G. A. Comparison of the ability of woody plants of different species to accumulate heavy metals in the urban environment. Ecology and Industry of Russia. 2024, vol. 28, no. 11, pp. 66—71. [In Russ]. DOI: 10.18412/1816-0395-2024-1166-71.
13. Fedorets N. G., Bahmet O. N. Prospects for growing willow as a phytoremediant in technogenic areas of northwestern Russia. Ecology and Industry of Russia. 2014, no. 12, pp. 48—51. [In Russ].
14. Shulaev N. S., Pryanichnikova V. V., Kadyrov R. R. Regularities of electrochemical cleaning of oil-contaminated soils. Journal of Mining Institute. 2024, vol. 265, pp. 147—155. [In Russ].
15. Liu J., Xin X., Zhou Q. Phytoremediation of contaminated soils using ornamental plants. Environmental Reviews. 2018, vol. 26, no. 1, pp. 43—54. DOI: 10.1139/er-2017-0022.
16. Khan A. H. A., Kiyani A., Mirza C. R., Butt T. A., Barros R., Ali B., Iqbal M., Yousaf S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environmental Research. 2021, vol. 195, pp. 117—130. DOI: 10.1016/j.envres.2021.110780.
17. Rocha C. S., Rocha D. C., Kochi L. Y. Phytoremediation by ornamental plants: a beautiful and ecological alternative. Environmental Science and Pollution Research. 2022, vol. 29, pp. 3336—3354. DOI: 10.1007/s11356-021-17307-7.
18. Ahmad S., Khan J. A., Jamal A. Response of pot marigold to different applied levels of humic acid. Journal of Horticulture and Plant Research. 2019, vol. 5, pp. 57—60.
19. Minisha T. M., Shah I. K., Varghese G. K., Kaushal R. K. Application of Aztec Marigold (Tagetes Erecta L.) for phytoremediation of heavy metal polluted lateritic soil. Environmental Chemistry and Ecotoxicology. 2020, vol. 3, pp. 1—21. DOI: 10.1016/j.enceco.2020.10.007.
20. Singh S. K., Biswojit B. Bioavailability of heavy metals (Cd, Cr, Ni, Pb) to French Marigold (Tagetes Patula L.) in relation to soil properties. Trends in Technical & Scientific Research. 2018, vol. 1, no. 5, pp. 555—572. DOI: 10.19080/TTSR.2018.01.555572.
21. Milusheva D. I., Iakimova E. T., Atanassova B. Y. Growth performance of marigold (Tagetes Patula L.) at conditions of soil contamination with Cd, Al and Zn. Journal of Mountain Agriculture on the Balkans. 2016, vol. 19, no. 1, pp. 227—245.
22. Aparin B. F., Sukhacheva E. Y. Principles of soil mapping of a megalopolis with St. Petersburg as an example. Eurasian Soil Science. 2014, no. 7, pp. 790—802. [In Russ]. DOI: 10.7868/ S0032180X1407003X.
23. Sverchkov I., Gvozdetskaya M. Quantitative determination of sulfate sulfur in soils and sediments using the S-K and S-K X-ray spectra and PLS regression. Spectrochimica Acta, Part B: Atomic Spectroscopy. 2024, vol. 218. DOI: 10.1016/j.sab.2024.106992.
24. Sutrop U. List task and a cognitive salience index. Field Methods. 2001, vol. 13, no. 3, pp. 263—276. DOI: 10.1177/1525822X0101300303.
25. Loskutov S. I., Vorobyov N. I., Puhalsky Ya. V. Computer program No. 2024669033, 13.08.2024. [In Russ].
26. Ivanishchev V. V. On the possibility of an applying the method of cluster analysis to results of physiological-biochemical investigations of plants. News of the Tula state university. Natural sciences. 2018, no. 1, pp. 69—77. [In Russ].
27. Tyurin V. V., Shcheglov S. N. Diskriminantniy analiz v biologii: monografiya [Discriminant analysis in biology: monograph], Krasnodar, 2015, 126 p.
28. He Z., Shang X., Wang X., Xing Y., Zhang T., Yun J. The contribution of Ca and Mg to the accumulation of amino acids in maize: from the response of physiological and biochemical processes. BMC Plant Biology. 2024, vol. 24, no. 1, article 579. DOI: 10.1186/s12870-024-05287-y.